Abstract
Transmitters mediating 'fast' synaptic processes in the vertebrate central nervous system are commonly placed in two separate categories that are believed to exhibit no interaction at the receptor level. The 'inhibitory transmitters' (such as glycine and GABA) are considered to act only on receptors mediating a chloride conductance increase, whereas 'excitatory transmitters' (such as L-glutamate) are considered to activate receptors mediating a cationic conductance increase1. The best known excitatory receptor is that specifically activated by N-methyl-D-aspartate (NMDA)2 which has recently been characterized at the single channel level3–5. The response activated by NMDA agonists is unique in that it exhibits a voltage-dependent Mg block3,6. We report here that this response exhibits another remarkable property: it is dramatically potentiated by glycine. This potentiation is not mediated by the inhibitory strychnine-sensitive glycine receptor7,8, and is detected at a glycine concentration as low as 10 nM. The potentiation can be observed in outside-out patches as an increase in the frequency of opening of the channels activated by NMDA agonists. Thus, in addition to its role as an inhibitory transmitter, glycine may facilitate excitatory transmission in the brain through an allosteric9 activation of the NMDA receptor.
This is a preview of subscription content
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
References
Iversen, L. L. Proc. R. Soc. B221, 245–260 (1984).
Watkins, J. C. & Evans, R. H. A. Rev. Pharmac. 21, 165–205 (1981).
Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. Nature 307, 462–465 (1984).
Cull-Candy, S. G. & Usowicz, M. M. Nature 325, 525–528 (1987).
Jahr, C. E. & Stevens, C. F. Nature 325, 522–525 (1987).
Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. Nature 309, 261–263 (1984).
Curtis, D. R., Hösli, L. & Johnston, G. A. R. Exp. Brain Res. 6, 1–18 (1968).
Graham, D., Pfeiffer, F., Simler, R. & Betz, H. Biochemistry 24, 990–994 (1985).
Monod, J., Wyman, J. & Changeux, J. P. J. molec. Biol. 12, 88–118 (1965).
Werman, R., Davidoff, R. A. & Aprison, M. H. Nature 214, 681–683 (1967).
Hamill, O. P., Bormann, J. & Sakmann, B. Nature 305, 805–807 (1983).
Kiskin, N. I., Krishtal, O. A. & Tsyndrenko, A. Ya. Neurosci. Lett. 63, 225–230 (1986).
Ferraro, T. N. & Hare, T. A. Brain Res. 338, 53–60 (1985).
Sigvardt, K. A., Grillner, S., Wallen, P. & Van Dongen, P. A. M. Brain Res. 336, 390–395 (1985).
Herrling, P. L., Morris, R. & Salt, T. E. J. Physiol., Lond. 339, 207–222 (1983).
Fagg, G. E. Trends Neurosci. 8, 207–210 (1985).
Nakajima, Y. J. comp. Neurol. 156, 375–402 (1974).
Choi, D. W., Farb, D. H. & Fischbach, G. D. Nature 269, 342–344 (1977).
Study, R. E. & Barker, J. L. Proc. natn. Acad. Sci. U.S.A. 78, 7180–7184 (1981).
Bormann, J. & Sakmann, B. IUPHAR 9th int. Congr. Pharmac. Abstr. S13–14 (Macmillan, London, 1984).
Haefely, W. E., Kyburz, E., Gerecke, M. & Möhler, H. Adv. Drug. Res. 14, 165–322 (1985).
Ransom, B. R., Neale, E., Henkart, M., Bullock, P. N. & Nelson, P. G. J. Neurophysiol. 40, 1132–1150 (1977).
Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).
Yellen, G. Nature 296, 357–359 (1982).
Johnson, J. & Ascher, P. Soc. Neurosci. Abstr. 12, 58 (1986).
Vyklicky, L. et al. Brain Res. 363, 148–151 (1986).
Ascher, P., Nowak, L. & Kehoe, J. S. in Ion channels in Neural Membranes (eds Ritchie, J. M., Keynes, R. D. & Bolis, L.) 283–295 (Liss, New York, 1986).
Nelson, P. G., Ransom, B. R., Henkart, M. & Bullock, P. N. J. Neurophysiol. 40, 1178–1187 (1977).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Johnson, J., Ascher, P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325, 529–531 (1987). https://doi.org/10.1038/325529a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/325529a0
Further reading
-
Distributed genetic architecture across the hippocampal formation implies common neuropathology across brain disorders
Nature Communications (2022)
-
Roles of Phosphorylation of N-Methyl-d-Aspartate Receptor in Chronic Pain
Cellular and Molecular Neurobiology (2022)
-
Structural insights into the inhibition of glycine reuptake
Nature (2021)
-
Conformational rearrangement of the NMDA receptor amino-terminal domain during activation and allosteric modulation
Nature Communications (2021)
-
A human stem cell-derived test system for agents modifying neuronal N-methyl-d-aspartate-type glutamate receptor Ca2+-signalling
Archives of Toxicology (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.