Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Recombinant interleukin-2 directly augments the cytotoxicity of human monocytes

Abstract

Interleukin-2 (IL-2), originally described as a growth factor required for sustained proliferation of T cells in vitro1,2 is a glycoprotein hormone of known structure3 which appears to be important for the generation of immune responses in vivo4. As well as T lymphocytes, B lymphocytes5 and large granular lymphocytes with natural killer activity (NK cells)6 can also respond to IL-2. The action of IL-2 seemed to be limited specifically to lymphocytes, however, and the term 'T-lymphocytotrophic hormone' was used7. Here we provide evidence that human monocytes display a substantially increased cytotoxic activity as a direct and rapid response to human recombinant IL-2 but not to human recombinant glycosylated interferon-γ (IFN-γ) or lipopolysac-charide. Our results reveal a previously unknown function of IL-2 and suggest its possible involvement in monocyte-T cell interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Morgan, D. A., Ruscetti, F. M. & Gallo, R. C. Science 193, 1007–1008 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Gillis, S. & Smith, K. A. Nature 268, 154–156 (1977).

    Article  ADS  CAS  Google Scholar 

  3. Robb, R. J. Immun. Today 5, 203–209 (1984).

    Article  CAS  Google Scholar 

  4. Malkovsky, M. & Medawar, P. B. Immun. Today 5, 340–343 (1984).

    Article  CAS  Google Scholar 

  5. Waldmann, T. A. et al. J. exp. Med. 160, 1450–1466 (1984).

    Article  CAS  Google Scholar 

  6. Ortaldo, J. R. et al. J. Immun. 133, 779–783 (1984).

    CAS  PubMed  Google Scholar 

  7. Smith, K. A. A. Rev. Immun. 2, 319–333 (1984).

    Article  CAS  Google Scholar 

  8. Yron, I., Wood, T. A., Spiess, P. J. & Rosenberg, S. A. J. Immun. 125, 238–245 (1980).

    CAS  PubMed  Google Scholar 

  9. Grimm, E. A., Mazumder, A., Zhang, H. Z. & Rosenberg, S. A. J. exp. Med. 155, 1823–1841 (1982).

    Article  CAS  Google Scholar 

  10. Grimm, E. A. et al. J. exp. Med. 157, 884–897 (1983).

    Article  CAS  Google Scholar 

  11. Grimm, E. A. et al. J. exp. Med. 158, 1356–1361 (1983).

    Article  CAS  Google Scholar 

  12. Rosenberg, S. A. et al. Science 223, 1412–1415 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Sondel, P. M. et al. J. Immun. 137, 502–511 (1986).

    CAS  PubMed  Google Scholar 

  14. Malkovsky, M. et al. Proc. natn. Acad. Sci. U.S.A. 82, 536–538 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Hale, G. et al. Blood 62, 873–882 (1983).

    CAS  PubMed  Google Scholar 

  16. Bubenik, J. et al. Neoplasma 24, 319–326 (1978).

    Google Scholar 

  17. Rinehart, J. J., Lange, P., Gormus, B. J. & Kaplan, M. E. Blood 52, 211–220 (1978).

    CAS  PubMed  Google Scholar 

  18. Zanella, A. et al. J. immun. Meth. 41, 279–288 (1981).

    Article  CAS  Google Scholar 

  19. Hildreth, J. E. K., Gotch, F. M., Hildreth, P. D. K. & McMichael, A. J. Eur. J. Immun. 13, 202–208 (1983).

    Article  CAS  Google Scholar 

  20. Dongworth, D. W., Gotch, F. M., Hildreth, J. E. K., Morris, A. & McMichael, A. J. Eur. J. Immun. 15, 888–892 (1985).

    Article  CAS  Google Scholar 

  21. Devos, R., Plaetinck, G. & Fiers, W. Eur. J. Immun. 14, 1057–1060 (1984).

    Article  CAS  Google Scholar 

  22. Kelley, V. E., Fiers, W. & Strom, T. B. J. Immun. 132, 240–245 (1984).

    CAS  PubMed  Google Scholar 

  23. Herrmann, F., Cannistra, S. A., Levine, H. & Griffin, J. D. J. exp. Med. 162, 1111–1116 (1985).

    Article  CAS  Google Scholar 

  24. Benveniste, E. N. & Merrill, J. E. Nature 321, 610–613 (1986).

    Article  ADS  CAS  Google Scholar 

  25. Devos, R. et al. Nucleic Acids Res. 11, 4307–4323 (1983).

    Article  CAS  Google Scholar 

  26. Liang, S.-M. et al. Biochem. J. 229, 429–439 (1985).

    Article  CAS  Google Scholar 

  27. Scahill, S. J., Devos, R., Van Der Heyden, J. & Fiers, W. Proc. natn. Acad. Sci. U.S.A. 80, 4654–4658 (1983).

    Article  ADS  CAS  Google Scholar 

  28. Devos, R., Opsomer, C., Scahill, S. J., Van Der Heyden, J. & Fiers, W. J. Interferon Res. 4, 461–468 (1984).

    Article  CAS  Google Scholar 

  29. Levin, J., Tomasulo, P. A. & Oser, R. S. J. Lab. clin. Med. 75, 903–911 (1970).

    CAS  PubMed  Google Scholar 

  30. Malkovsky, M. et al. Proc. natn. Acad. Sci. U.S.A. 80, 6322–6326 (1983).

    Article  ADS  CAS  Google Scholar 

  31. Malkovsky, M., Asherson, G. L., Stockinger, B. & Watkins, M. C. Nature 300, 652–655 (1982).

    Article  ADS  CAS  Google Scholar 

  32. Malkovsky, M. et al. J. Immun. 130, 785–790 (1983).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malkovský, M., Loveland, B., North, M. et al. Recombinant interleukin-2 directly augments the cytotoxicity of human monocytes. Nature 325, 262–265 (1987). https://doi.org/10.1038/325262a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325262a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing