
_NA_TU_R_E_v_o_L_. 3_2_5 _Is_J_A_Nu_A_R_Y_l9_s7 ________ NEWS ANDVIEWS------------------1_99 

Number theory 

Geometry finds factors faster 
Ian Stewart 

EvERY whole number can, in theory, be 
resolved into prime factors. In practice the 
process may take longer than the lifetime 
of the Universe. The obvious method , 
trial division by all primes up to the square 
root , is hopelessly inefficient. Its execu
tion time grows so rapidly that improve
ments of a factor of, say, 100 in computer 
speeds will add only a few digits to the size 
of numbers that can be dealt with . To 
factorize an arbitrary 250-digit number
that is , one without special features that 
make it easy to factorize- is currently out 
of the question. 

On the other hand, nobody has ever 
proved that prime factorization really 
must be as hard as it seems to be. Efficient 
and effective methods have not been ruled 
out. A new method, devised by Hendrik 
Lenstra of the University of Amsterdam 
and based on deep ideas from algebraic 
geometry and number theory, points to a 
new direction for attack (Factoring Inte
gers with Elliptic Curves, Mathematical 
Sciences Research Institute preprint, Ber
keley , 1986). The problem is of practical 
importance because of its relation to 
public-key cryptosystems - methods, 
hoped to be 'unbreakable', for putting 
messages into code. If a fast-factor algor
ithm exists, some of these methods will be 
breakable. The problem also has intrinsic 
mathematical interest as one of the most 
basic questions in number theory . 

The objective is an algorithm: a pre
scribed procedure, involving no guess
work, and guaranteed either to produce a 
factor or to show that the number is prime. 
The efficiency of an algorithm is measured 
by the way its worst-case 'running time' 
grows with the number n of digits of the 
number being factorized . The running 
time is usually defined as the number of 
arithmetical operations (+ , x and so on) 
involved, and only a relatively crude esti
mate is sought. A 'good' algorithm runs in 
polynomial time, growing no faster than 
some fixed power of n; a bad one runs in 
exponential time, growing as the nth pow
er of some constant. 

Erratum 
IN the article 'Melting and the surface' by 
Robert Cahn (Nature 323, 668; 1986) a sen
tence in the sixth paragraph was omitted. The 
second half of the paragraph should have read: 
"The melting temperature of argon at atmos
pheric pressure is 84 K, but allowing for the 
pressure in the bubbles (estimated from the 
measured anomalously small lattice parameter 
of the argon) it should be about 250 K. 
In fact, the diffraction pattern of solid argon is 
detectable up to 730 K, that is, a metastable 
superheating of 480 K!" 

For an n-digit number of size roughly 
10", trial division requires about 10"" trials. 
Even at one arithmetic operation per trial 
(which is far too low an estimate) this has 
exponential growth, hence is inefficient. 
In contrast, the euclidean algorithm for 
finding the least common multiple (l.c.m.) 
of two n-digit numbers takes about 5n 
steps. So this runs in polynomial time and 
is highly efficient. 

To illustrate the alternatives to trial 
division, I will describe Pollard's p-1 
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The group law on an elliptic curve. Given two 
points A and B, form the line joining them. 
This cuts the curve in a third point. Reflect 
that point in the horizontal (y) axis to get the 
point AB, which is the 'product' of the 

original points A and B. 

method (see Riesel , H. Prime Numbers 
and Computer Methods for Factorization, 
Birkhiiuser, Boston, 1985) . This method 
starts with a number Nand looks for prime 
factors p such that p-1 has only 'small' 
prime divisors. It is based on a number
theoretic fact: if p-1 divides a number Q 
and p does not divide Q then p divides aQ-
1 for any a not divisible by p. Then the 
l.c.m. of Nand aQ-1 is divisible by p, and 
this can be found rapidly by the euclidean 
algorithm . In practical implementations a 
standard series of Qs is defined and stored 
in the computer: for example, Q = 
l.c.m.(1,2, ... ,r) for r = 1,2,3, .. . up to 
some predetermined limit. As an exam
ple, the method has been used to find the 
factor p=2670091735108484737 of 3'"+ 1. 
Althoughp is large,p-1 has the factoriza
tion 2'.3'.7'.17'.19.569 .631.23993 , and the 
primes involved there are all small. 

The key to Lenstra's method is to view 
Pollard's algorithm in more abstract 
terms . Suppose that p is a prime. If any 
two ofthe set of numbers 1,2, .. . ,p-1 are 
multiplied together modulo p (that is , the 
remainder is taken on dividing the product 
by p) then another number in that set is 
obtained. The set is said to form a group 
under multiplication modulo p. Pollard's 
method can be seen as exploiting the 
structure of this group. Lenstra's method 

is obtained from Pollard's by replacing the 
group by a more subtle one: the group of 
points on an elliptic curve . 

Elliptic curves have been studied by 
number-theorists for about a century; not 
for applications to prime factorization , 
but because of their intrinsic mathemati
cal beauty and interest. They are curves 
defined by an equation of the form l = 
x' +ax+b, for constants a and b. Associ
ated with any such curve is a geometric 
multiplication law. Given any two points 
A and B on the curve , draw the line be
tween them (see figure) . Because the 
curve has an equation of degree 3 this line 
meets the curve at a third point. Multiply 
they-coordinate of this third point by -1 : 
because of the term lin the equation, the 
result is still a point on the curve. Call it 
the 'product' AB of the first two points. 
The surprise is that this product obeys 
sensible algebraic laws: the points on the 
curve form a group. 

In Lenstra's algorithm the coordinates x 
andy are taken to be integers modulo N, 
where N is the number to be factorized . If 
a single elliptic curve is used the method is 
much like Pollard 's. However, the num
ber p-1 that occurs in Pollard's method is 
replaced by the number p-t where t de
pends on the choice of elliptic curve. Dif
ferent curves give different ts, so there is a 
whole range of possible numbers p-t. As 
long as just one of these has small divisors, 
the method will find a factor. 

The algorithm therefore starts by 
choosing some elliptic curve and seeking a 
factor by a generalized version of Pollard's 
method . If this fails, it does something 
that is not available in the original Pollard 
method: it tries another elliptic curve . 
Provided there is a reasonably dense set of 
numbers near p that are a product of small 
primes, the method will find a factor 
rapidly. The precise running time is rather 
complicated , and its proof depends on a 
plausible but unproved conjecture on this 
density. Other known methods have a 
similar conjectured running time , but they 
lack one important feature of Lenstra's 
method : the running time depends on the 
size of the prime factors of N . 

Until very recently nobody had ex
pected there to be any connection be
tween elliptic curves and prime factoriza
tion. Only with hindsight is the connection 
clear. Although Lenstra's method may 
seem complicated, it is a natural generali
zation of Pollard 's method. Perhaps even 
more efficient primality tests lurk unsus
pected among the discoveries of number 
theorists . If so , some deep and abstract 
mathematics will take on a new , practical 
guise. Computer scientists working on 
algorithms for factorization would be well 
advised to brush up on their number 
theory. 0 

Ian Stewart is in the Mathematics Institute, Uni
versity of Warwick. Coventry CV4 7AL, UK. 
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