Tidal heating in an internal ocean model of Europa


Considerable evidence suggests that Europe's internal structure might consist of a liquid water layer that decouples a thin (<30 km) overlying ice lithosphere from an underlying silicate core1,2. A lack of impact features, extremely subdued topography, and positive spectroscopic identification of H2O all imply recent resurfacing by water. In addition, curvilinear features resembling cracks are ubiquitous over the surface; their orientations are broadly consistent with tidally controlled tectonic activity3. Compositional models of Europea indicate that the H2O layer could be over 100 km thick1. Cassen et al.4 first showed how tidal heating, if sufficiently intense, might stabilize a thin (<30 km) ice lithosphere over the internal ocean and prevent the water from freezing. Other models of Europa do not include an internal ocean and instead have an ice layer (perhaps as thick as 100 km or as thin as a few kilometres) resting directly on the silicate interior5,6. However, based on studies of crater relaxation, Thomas and Schubert7 have shown the version of this model with a thin ice layer to be unlikely. The plausibility of the internal ocean model vis-a-vis the thick ice model depends critically on the level of tidal heating in Europa. Here we present new calculations of tidal heating based on a more realistic three-layer model of Europa. The tidal distortion of a decoupled ice lithosphere is only half that previously thought. At the current value of orbital eccentricity, tidal heating is only marginally able to prevent the internal ocean from freezing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Cassen, P., Peale, S. J. & Reynolds, R. T. in Satellites of Jupiter (ed. Morrison, D.) 93–128 (University of Arizona Press, Tucson, 1982).

    Google Scholar 

  2. 2

    Schubert, G., Reynolds, R. T. & Spohn, T. in Satellites (eds Burns, J. A. & Matthews, M. S.) 224–292 (University of Arizona Press, Tucson, 1986).

    Google Scholar 

  3. 3

    Helfenstein, P. & Parmentier, E. M. in Proc. 11th lunar and planet. Sci. Conf., 1987–1998 (1980).

  4. 4

    Cassen, P., Reynolds, R. T. & Peale, S. J. Geophys. Res. Lett. 6, 731–734 (1979).

    ADS  Article  Google Scholar 

  5. 5

    Ransford, G. A., Finnerty, A. A. & Collerson, K. D. Nature 289, 21–24 (1981).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Finnerty, A. A., Ransford, G. A., Pieri, D. & Collerson, K. D. Nature 289, 24–27 (1980).

    ADS  Article  Google Scholar 

  7. 7

    Thomas, P. & Schubert, G. J. geophys. Res. 91, D453–D459 (1986).

    ADS  Article  Google Scholar 

  8. 8

    Cassen, P., Reynolds, R. T. & Peale, S. J. Geophys. Res. Lett. 7, 987–988 (1980).

    ADS  Article  Google Scholar 

  9. 9

    Squyres, S. W., Reynolds, R. T., Cassen, P. & Peale, S. J. Nature 301, 225–226 (1983).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Cappallo, R. J., Counselman, C. C., King, R. W. & Shapiro, I. I. J. geophys. Res. 86, 7180–7184 (1981).

    ADS  Article  Google Scholar 

  11. 11

    Yoder, C. F. Phil. Trans. R. Soc. 303, 327–338 (1981).

    ADS  Article  Google Scholar 

  12. 12

    Peale, S. J. & Cassen, P. Icarus 36, 245–269 (1978).

    ADS  Article  Google Scholar 

  13. 13

    Sabadini, R., Yuen, D. A. & Boschi, E. J. geophys. Res. 87, 2885–2903 (1982).

    ADS  Article  Google Scholar 

  14. 14

    Crossley, D. J. & Gubbins, D. Geophys. Res. Lett. 2, 1–5 (1975).

    ADS  Article  Google Scholar 

  15. 15

    Kaula, W. M. Rev. Geophys. 2, 661–685 (1964).

    ADS  Article  Google Scholar 

  16. 16

    Shoemaker, E. M., Lucchita, B. K., Plescia, J. B., Squyres, S. W. & Wilhelms, D. E. in Satellites of Jupiter (ed. Morrison, D.) 435–520 (University of Arizona Press, Tucson, 1982).

    Google Scholar 

  17. 17

    Passey, Q. Icarus 53, 105–120 (1983).

    ADS  Article  Google Scholar 

  18. 18

    Buratti, B. J. Icarus 61, 208–217 (1985).

    ADS  Article  Google Scholar 

  19. 19

    Murase, T. & McBirney, A. R. Bull. geol. Soc. Am. 84, 3563–3592 (1973).

    CAS  Article  Google Scholar 

  20. 20

    Glen, J. W. Cold Regions Science & Engineering Monograph (US Army, Hanover, New Hampshire, 1975).

    Google Scholar 

  21. 21

    Greenberg, R. & Weidenschilling, S. J. Icarus 58, 186–196.

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ross, M., Schubert, G. Tidal heating in an internal ocean model of Europa. Nature 325, 133–134 (1987). https://doi.org/10.1038/325133a0

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing