Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bovine papillomavirus E2 trans-activating gene product binds to specific sites in papillomavirus DNA

Abstract

Enhancers are cis-act ing elements that activate transcription in higher eukaryotes independently of their position or orientation relative to the promoter that they activate1. The mechanisms by which enhancers activate transcription are poorly understood, in part because, with the exception of the glucocorticoid receptor2, the proteins that directly interact with enhancers have not been purified, nor have the genes encoding them been cloned3–5. The upstream regulatory region (URR) that immediately precedes the early genes of the bovine papillomavirus type 1 genome (BPV) has enhancer activity when it is activated by a trans-acting gene product of the BPV E2 open reading frame (ORF) (Fig. 1)6. It is not known whether this enhancement represents a direct or indirect effect of E2 on the URR. We have used an E2 peptide expressed in bacteria and a DNA-protein complex immunoprecipitation assay to study E2-mediated enhancement of transcription by the URR. We show here that this peptide directly binds to four specific sites in the BPV URR, and to one site in the human papillomavirus (H)PV16 URR. All the binding sites contain a related sequence of nucleotides; a 23 base pair (bp) fragment containing this sequence can specifically prevent binding of the E2 protein to the BPV URR. The BPV E2–URR enhancer interaction may therefore represent a useful model system for studying the mechanism of transcriptional enhancement, as both an effector protein and its target enhancer can be purified and genetically manipulated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Khoury, G. & Gruss, P. Cell 33, 313–314 (1983).

    Article  CAS  Google Scholar 

  2. Weinberger, C. et al. Science 228, 740–742 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Bohnlein, E. & Gruss, P. Molec. cell Biol. 6, 1401–1411 (1986).

    Article  CAS  Google Scholar 

  4. Singh, H., Sen, R., Baltimore, D. & Sharp, P. Nature 319, 154–158 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Wildeman, A. G. et al. Molec. cell Biol. 6, 2098–2105 (1986).

    Article  CAS  Google Scholar 

  6. Spalholz, B., Yang, Y.-C. & Howley, P. M. Cell 42, 183–191 (1985).

    Article  CAS  Google Scholar 

  7. Sarver, N., Rabson, M. S., Yang, Y.-C., Byrne, J. C. & Howley, P. M. J. Virol 52, 377–388 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. DiMaio, D. J. Virol. 57, 475–480 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Keller, J. M. & Alwine, J. C. Cell 36, 381–389 (1984).

    Article  CAS  Google Scholar 

  10. Setoyama, C., Frunzio, R., Liau, G., Mudryj, M. & de Crombrugghe, B. Proc. natn. Acad. Sci. U.S.A 83, 3213–3217 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Schiller, J. T., Vass, W. C. & Lowy, D. L. Proc. natn. Acad. Sci. U.S.A. 81, 7880–7884 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Yang, Y.-C., Spalholz, B. A., Rabson, M. S. & Howley, P. M. Nature 318, 575–577 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Schiller, J. T., Vass, W. C., Vousden, K. H. & Lowy, D. R. J. Virol 57, 1–6 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Groff, D. E. & Lancaster, W. D. Virology 150, 221–230 (1986).

    Article  CAS  Google Scholar 

  15. Danos, O., Giri, I., Thierry, F. & Yaniv, M. J. invest. Derm. 83, 8s–11s (1984).

    Article  Google Scholar 

  16. Heilman, C., Engel, L., Lowy, D. R. & Howley, P. M. Virology 119, 22–34 (1982).

    Article  CAS  Google Scholar 

  17. Stenlund, A., Zabielski, J., Ahola, H., Moreno-Lopez, J. & Pettersson, U. J. molec. Biol. 182, 541–554 (1985).

    Article  CAS  Google Scholar 

  18. Androphy, E. J., Schiller, J. T. & Lowy, D. R. Science 230, 442–445 (1985).

    Article  ADS  CAS  Google Scholar 

  19. McKay, R. D. G. J. molec Biol. 145, 471–488 (1981).

    Article  CAS  Google Scholar 

  20. Seedorf, K., Krammer, G., Durst, M., Suhai, S. & Rowekamp, W. G. Virology 145, 181–185 (1985).

    Article  CAS  Google Scholar 

  21. Kriegler, M. & Botchan, M. Molec. cell. Biol. 3, 325–339 (1983).

    Article  CAS  Google Scholar 

  22. Dartmann, K., Schwarz, E., Gissmann, L. & zur Hausen, H. Virology 151, 124–130 (1986).

    Article  CAS  Google Scholar 

  23. Keegan, L., Gill, G. & Ptashne, M. Science 231, 699–704 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Herbomel, P., Bourachot, B. & Yaniv, M. Cell 39, 653–662 (1984).

    Article  CAS  Google Scholar 

  25. Zenke, M. et al. EMBO J. 5, 387–397 (1986).

    Article  CAS  Google Scholar 

  26. Dynan, W. S. & Tjian, R. Nature 316, 774–778 (1985).

    Article  ADS  CAS  Google Scholar 

  27. Sawadogo, M. & Roeder, R. Cell 43, 165–175 (1985).

    Article  CAS  Google Scholar 

  28. Kovesdi, I., Reichel, R. & Nevins, J. Cell 45, 219–228 (1986).

    Article  CAS  Google Scholar 

  29. Felber, B. K., Paskalis, H., Klienman-Ewing, C., Wong-Staal, F. & Pavlakis, G. N. Science 229, 675–679 (1985).

    Article  ADS  CAS  Google Scholar 

  30. Rosen, C. A., Sodroski, J. G., Kettman, R. & Haseltine, W. A. J. Virol 57, 738–744 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lusky, M. L. & Botchan, M. R. Nature 293, 79–81 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Androphy, E., Lowy, D. & Schiller, J. Bovine papillomavirus E2 trans-activating gene product binds to specific sites in papillomavirus DNA . Nature 325, 70–73 (1987). https://doi.org/10.1038/325070a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325070a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing