Activation of the C–C bond provides a molecular basis for structure sensitivity in metal catalysis


The catalytic activation of hydrocarbon C–H and C–C bonds converts petroleum into fuels and chemicals. Understanding of the structural and electronic effects that control the catalysis has been a goal of researchers for decades. A focal issue concerns the number of metal atoms in a catalytic site required for C–C bond rupture1,2. Metal surfaces catalyse alkane hydrogenolysis (C–C bond breaking), but the catalytic sites are poorly defined3,4; soluble, structurally defined transition metal complexes are not known to catalyse this reaction. Here we present evidence demonstrating that isolated mononuclear rhenium complexes on the surface of MgO catalyse alkene hydrogenation, but not C–C bond rupture; in contrast, ensembles consisting of three of the same rhenium complexes catalyse both alkene hydrogenation and rupture of the C–C bond of cyclopropane. These results provide a molecular foundation for structure sensitivity in surface catalysis and point the way to design of multicentre catalytic sites on surfaces5–7.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Boudart, M. Adv. Catalysis 20, 153–166 (1969).

    CAS  Google Scholar 

  2. 2

    Somorjai, G. A. & Carrazza, J. Ind. Engng Chem., Fundam. 25, 63–69 (1986).

    CAS  Article  Google Scholar 

  3. 3

    Gault, F. G. Adv. Catalysis 30, 1–95 (1981).

    CAS  Google Scholar 

  4. 4

    Van Broekhoven, E. H., Schoonhaven, J. W. F. M. & Ponec, V. Surf. Sci. 156, 899–910 (1985).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Lisitsyn, A. S., Golouin, A. V., Kuznetsov, V. L. & Yermakov, Yu. I. J. Catal. 95, 527–538 (1985).

    CAS  Article  Google Scholar 

  6. 6

    Psaro, R. & Ugo, R. J. molec. Catal. 21, 331–351 (1983).

    CAS  Article  Google Scholar 

  7. 7

    Psaro, R. et al. J. organometal. Chem. 213, 215–247 (1981).

    CAS  Article  Google Scholar 

  8. 8

    Gillespie, W. D., Herz, R. K., Petersen, E. E. & Somorjai, G. A. J. Catal. 70, 147–159 (1981).

    CAS  Article  Google Scholar 

  9. 9

    Herz, R. K., Gillespie, W. D., Petersen, E. E. & Somorjai, G. A. J. Catal. 67, 371–386 (1981).

    CAS  Article  Google Scholar 

  10. 10

    Newman, L. J. & Bergman, R. G. J. Am. chem. Soc. 107, 5314–5315 (1985).

    CAS  Article  Google Scholar 

  11. 11

    Bandy, J. A., Cloke, G. N., Green, M. L. H., O'Hare, D. & Prout, K. JCS Chem. Commun. 240–242 (1984).

  12. 12

    Baudry, D., Ephritikhine, M. & Felkin, H. JCS Chem. Commun. 606–607 (1982).

  13. 13

    Rooney, J. H. J. molec. Catal. 31, 147–159 (1985).

    CAS  Article  Google Scholar 

  14. 14

    Kirlin, P. S. et al. J. phys. Chem. 90, 4882–4887 (1986).

    CAS  Article  Google Scholar 

  15. 15

    Wallace, H. F. & Hayes, K. E. J. Catal. 18, 77–82 (1970).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kirlin, P., Gates, B. Activation of the C–C bond provides a molecular basis for structure sensitivity in metal catalysis. Nature 325, 38–40 (1987).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing