Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Site-directed mutagenesis reveals role of mobile arginine residue in lactate dehydrogenase catalysis


The binding of substrates to lactate dehydrogenases induces a marked rearrangement of the protein structure in which a ‘loop’ of polypeptide (residues 98–110) closes over the active site of the enzyme1,2. In this rearrangement, arginine 109 (a basic residue conserved in all known lactate dehydrogenase sequences and in the homologous malate dehydrogenases3) moves 0.8 nm from a position in the solvent4 to one in the active site1,5,6 where its guanidinium group resides within hydrogen bonding distance of both the reactive carbonyl of pyruvate and imidazole ring of the catalytic histidine 195 (see Fig. 1). Whilst this feature of the enzyme has been commented upon previously1, the function of this mobile arginine residue during catalysis has not been tested experimentally. The advent of protein engineering has now enabled us to define the role of this basic residue by substituting it with the neutral glutamine. Transient kinetic and equilibrium studies of the mutant enzyme indicate that arginine 109 enhances the polarization of the pyruvate carbonyl group in the ground state and stabilizes the transition state. The gross active-site structure of the enzyme is not altered by the mutation since an alternative catalytic function of the enzyme (rate of addition of sulphite to NAD+), which does not require hydride transfer, is insensitive to the arginine→glutamine substitution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Grau, U. M., Trommer, W. E. & Rossmann, M. G. J. molec. Biol. 151, 289–307 (1981).

    CAS  Article  Google Scholar 

  2. 2

    Parker, D. M. & Holbrook, J. J. Pyridine Nucleotide-Dependent Dehydrogenases 485–502 (ed. Sund, H.) (de Gruyter, Berlin, 1977).

    Google Scholar 

  3. 3

    Birktoft, J. J., Fernley, R. T., Bradshaw, R. A. & Banaszak, L. J. Proc. natn. Acad. Sci. U.S.A. 79, 6166–6170 (1982).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Adams, M. J. et al. J. molec. Biol. 41, 159–188 (1969).

    CAS  Article  Google Scholar 

  5. 5

    Adams, M. J. et al. Proc. natn. Acad. Sci. U.S.A. 70, 1968–1972 (1973).

    ADS  CAS  Article  Google Scholar 

  6. 6

    White, J. L. et al. Molec. Biol. 102, 759–779 (1976).

    CAS  Article  Google Scholar 

  7. 7

    Barstow, D. A. et al. Gene 46, 47–55 (1986).

    CAS  Article  Google Scholar 

  8. 8

    Wirz, B., Suter, F. & Zuber, H. Hoppe-Seyler's Z. physiol. Chem. 364, 893–909 (1983).

    CAS  Article  Google Scholar 

  9. 9

    Clarke, A. R., Atkinson, T., Campbell, J. W. & Holbrook, J. J. Biochim. biophys. Acta 829, 387–396 (1985).

    CAS  Article  Google Scholar 

  10. 10

    Winter, G., Fersht, A. R., Wilkinson, A. J., Zoller, M. & Smith, M. Nature 299, 756–758 (1982).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Amann, E., Brosius, J. & Ptashne, M. Gene 25, 167–178 (1983).

    CAS  Article  Google Scholar 

  12. 12

    Gibson, T. J. thesis, Univ. Cambridge (1984).

  13. 13

    Clarke, A. R., Waldman, A. D. B., Munro, I. & Holbrook, J. J. Biochim. biophys. Acta 828, 375–379 (1985).

    CAS  Article  Google Scholar 

  14. 14

    Atkinson, T. et al. in Bioactive Microbial Products (ed. Stowell, J. D.) Vol. 3, 27–43 (Academic, London 1986).

    Google Scholar 

  15. 15

    Holbrook, J. J., Liljas, A., Steindel, S. J. & Rossmann, M. G. in The Enzymes (ed. Boyer, P. D.), 3rd Edn Vol. 11, 191–292 (Academic, New York, 1975).

    Google Scholar 

  16. 16

    Parker, D. M., Jeckel, D. & Holbrook, J. J. Biochem. J. 201, 465–471 (1982).

    CAS  Article  Google Scholar 

  17. 17

    Holbrook, J. J. & Stinson, R. A. Biochem. J. 131, 739–748 (1973).

    CAS  Article  Google Scholar 

  18. 18

    Parker, D. M., Lodola, A. & Holbrook, J. J. Biochem. J. 173, 959–967 (1978).

    CAS  Article  Google Scholar 

  19. 19

    Johnson, S. L. & Smith, K. W. Biochemistry 15, 553–559 (1976).

    CAS  Article  Google Scholar 

  20. 20

    Holbrook, J. J. & Gutfreund, H. FEBS Lett. 31, 157–169 (1973).

    CAS  Article  Google Scholar 

  21. 21

    Klinman, J. P. Adv. Enzym. relat. Areas molec. Biol. 46, 415–493 (1978).

    CAS  Google Scholar 

  22. 22

    Lodola, A., Shore, J. D., Parker, D. M. & Holbrook, J. J. Biochem. J. 175, 987–998 (1978).

    CAS  Article  Google Scholar 

  23. 23

    Clarke, A. R., Waldman, A. D. B., Hart, K. W. & Holbrook, J. J. Biochim. biophys. Acta 829, 397–407 (1985).

    CAS  Article  Google Scholar 

  24. 24

    Winter, A. D. & Schwert, G. W. J. biol. Chem. 234, 1155–1161 (1959).

    Google Scholar 

  25. 25

    Ackers, G. K. & Smith, F. R. A. Rev. Biochem. 54, 597–629 (1985).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Clarke, A., Wigley, D., Chia, W. et al. Site-directed mutagenesis reveals role of mobile arginine residue in lactate dehydrogenase catalysis. Nature 324, 699–702 (1986).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing