Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cross-regulatory interactions among the gap genes of Drosophila

Abstract

Segmentation of the Drosophila embryo involves expression of several classes of zygotic genes in response to positional information of maternal origin1. Zygotic expression of the gap genes is thought to be required for the subdivision of the embryo into several units of adjacent segments; pair-rule genes establish a repeat unit length of two segments and segment polarity genes specify parts of the single segment2–5. The positional information provided by the three classes of segmentation genes is interpreted for the establishment of segment identity using the homoeotic genes6–10. Molecular probes for several segmentation and homoeotic genes reveal a temporal and spatial pattern of gene expression in the young embryo11–18. Changes in the pattern of expression of these genes in mutant embryos provide evidence for a network of interactions among homoeotic and pair-rule genes19–23 that itself depends on the activity of gap genes24–27. We show here that the spatial limit of gap gene expression depends on bilateral interactions among gap genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nüsslein-Volhard, C. in Determinants of Spatial Organization (eds Subtelney, S. & Konigsberg, I. R.) 185–211 (Academic, New York, 1979).

    Book  Google Scholar 

  2. Nüsslein-Volhard, C. & Wieschaus, E. Nature 287, 795–801 (1980).

    Article  ADS  Google Scholar 

  3. Nüsslein-Volhard, C., Wieschaus, E. & Kluding, H. Wilhelm Roux Arch. dev. Biol. 193, 267–282 (1984).

    Article  Google Scholar 

  4. Wieschaus, E., Nüsslein-Volhard, C. & Jürgens, G. Wilhelm Roux Arch. dev. Biol. 193, 283–295 (1984).

    Article  Google Scholar 

  5. Jürgens, G., Wieschaus, E., Nüsslein-Volhard, C. & Kluding, H. Wilhelm Roux Arch. dev. Biol. 193, 296–307 (1984).

    Article  Google Scholar 

  6. Lewis, E. B. Nature 276, 565–570 (1978).

    Article  ADS  CAS  Google Scholar 

  7. Kaufman, T. C., Lewis, R. & Wakimoto, B. Genetics 94, 115–133 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wakimoto, B. T. & Kaufman, T. C. Devl Biol. 81, (1981).

  9. Ouweneel, W. H. Adv. Genet. 18, 179–205 (1976).

    Article  CAS  Google Scholar 

  10. Wakimoto, B. T., Turner, F. R. & Kaufman, T. C. Devl Biol. 102, 147–172 (1985).

    Article  Google Scholar 

  11. Hafen, E., Levine, M., Garber, R. L. & Gehring, W. J. EMBO J. 2, 617–623 (1983).

    Article  CAS  Google Scholar 

  12. Akam, M. E. EMBO J. 2, 2075–2084 (1983).

    Article  CAS  Google Scholar 

  13. Hafen, E., Kuroiwa, A. & Gehring, W. J. Cell 37, 833–841 (1984).

    Article  CAS  Google Scholar 

  14. Martinez-Arias, A. & Lawrence, P. A. Nature 313, 639–642 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Poole, S., Kauvar, L. M., Drees, B. & Kornberg, T. Cell 40, 37–43 (1985).

    Article  CAS  Google Scholar 

  16. Fjose, A., McGinnis, W. & Gehring, W. J. Nature 313, 284–289 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Knipple, D. C., Seifert, E., Rosenberg, U. B., Preiss, A. & Jäckle, H. Nature 317, 40–44 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Kilchher, F., Baumgartner, S., Bopp, D., Frei, E. & Noll, M. Nature 321, 493–499 (1986).

    Article  ADS  Google Scholar 

  19. Struhl, G. & White, R. H. Cell 43, 507–519 (1985).

    Article  CAS  Google Scholar 

  20. White, R. A. H. & Wilcox, M. Nature 318, 563–567 (1985).

    Article  ADS  Google Scholar 

  21. Harding, K., Wedeen, C., McGinnis, W. & Levine, M. Science 229, 1236–1242 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Wedeen, C., Harding, K. & Levine, M. Cell 44, 739–748 (1986).

    Article  CAS  Google Scholar 

  23. Ingham, P. W., Howard, K. R. & Ish-Horowicz, D. Nature 318, 439–445 (1985).

    Article  ADS  CAS  Google Scholar 

  24. Howard, K. & Ingham, P. Cell 44, 949–957 (1986).

    Article  CAS  Google Scholar 

  25. Carroll, S. B. & Scott, M. P. Cell 45, 113–126 (1986).

    Article  CAS  Google Scholar 

  26. Ingham, P. W., Ish-Horowicz, D. & Howard, K. R. EMBO J. 5, 1659–1665 (1986).

    Article  CAS  Google Scholar 

  27. Akam, M. & Martinez-Arias, A. EMBO J. 4, 1989–1700 (1985).

    Google Scholar 

  28. Meinhardt, H. J. Cell Sci. 4, 357–381 (1986).

    Article  CAS  Google Scholar 

  29. Preiss et al. Nature 317, 27–32 (1985).

    Article  ADS  CAS  Google Scholar 

  30. Rosenberg, U. B. et al. Nature 319, 336–339 (1986).

    Article  ADS  CAS  Google Scholar 

  31. Lehmann, R. & Nüsslein-Volhard, C. Devl. Biol. (in the press).

  32. Wieschaus, E. et al. Devl. Biol. 104, 172–186 (1984).

    Article  CAS  Google Scholar 

  33. Kemphues, K. J. et al. Genetics 105, 345–356 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jäckle, H., Tautz, D., Schuh, R. et al. Cross-regulatory interactions among the gap genes of Drosophila. Nature 324, 668–670 (1986). https://doi.org/10.1038/324668a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324668a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing