Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime ‘ozone hole’

Abstract

Large depletions in stratospheric ozone were first reported by Farman et al.1 at Halley Bay (76°S), and confirmed by satellite observations2. Chubachi3 gives a detailed account of ozone decreases and temperatures in the lower stratosphere during the spring of 1982 at 69°S. There is now evidence2 for annual declines in total ozone by 6 and 3% in regions of total ozone minima and maxima, respectively, from September to mid-October since the late 1970s. We propose here a chemical mechanism for the formation of the ozone hole. It involves removal of gaseous odd nitrogen by ion- and/or aerosol-catalysed conversion of N2O5 and ClONO2 to HNO3 vapour, followed by heteromolecular HNO3–H2O condensation, leading to HNO3–H2O aerosols. At an altitude of 17km, these processes start at temperatures below 205±5 K, well above the condensation temperature of pure water vapour. We propose that the absence of gaseous odd nitrogen and catalytic methane oxidation reactions driven by sunlight in early spring lead to large OH concentrations which rapidly convert HCl to ClOX. Catalytic reactions of ClOX and BrOX cause drastic ozone destructions and can account for the springtime ‘ozone hole’ first observed by Farman et al.1. By our model the depletion would be mainly due to emissions of industrial organic chlorine compounds. Arctic regions may also become affected. The depletion lasts while HNO3, but not HCl, is incorporated in the particles in the temperature range 205±5 K to 192 K.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Farman, J. C., Gardiner, B. G. & Shanklin, J. D. Nature 315, 207–210 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Stolarski, R. S. et al. Nature 322, 808–811.

  3. Chubachi, S. in Handbook for MAP Vol 18 (ed. Kato, S.) 453–457 (SCOSTEP, Univ. Illinois, Urbana, 1985).

    Google Scholar 

  4. McElroy, M. B., Salawitch, R. J., Wofsy, S. C. & Logan, J. A. Nature 321, 759–762 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Solomon, S., Garcia, R. R., Rowland, F. S. & Wuebbles, D. J. Nature 321, 755–758 (1986).

    Article  ADS  CAS  Google Scholar 

  6. McCormick, M. P., Steele, H. M., Hamill, P., Chu, W. P. & Swissler, T. J. J. atmos. Sci. 39, 1387–1397 (1982).

    Article  ADS  Google Scholar 

  7. Steele, H. M., Hamill, P., McCormick, M. P. & Swissler, T. J. J. atmos. Sci. 40, 2055–2067 (1983).

    Article  ADS  Google Scholar 

  8. Ferguson, E. E., Fehsenfeld, F. C. & Albritton, D. L. in Gas Phase Ion Chemistry Vol 1, 45–81 (Academic Press, 1979).

    Book  Google Scholar 

  9. Böhringer, H., Fahey, D. W., Fehsenfeld, F. C. & Ferguson, E. E. Planet. Space Sci. 31, 185–191 (1983).

    Article  ADS  Google Scholar 

  10. Arnold, F. & Crutzen, P. J. (in preparation).

  11. Arnold, F. in Proc. DAHLEM Workshop on Atmospheric Chemistry (Ed. Goldberg, E. D.) 273 (1982).

    Book  Google Scholar 

  12. Arnold, F. & Bührke, T. Nature 301, 293 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Ferguson, E. E. & Arnold, F. Acct. chem. Res. 14, 327 (1981).

    Article  CAS  Google Scholar 

  14. Baldwin, A. C. & Golden, D. M. Science 206, 562–563 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Clavelin, J. L. & Mirabel, P. J. Chim. phys. 76, 533–537 (1979).

    Article  CAS  Google Scholar 

  16. Forsythe, W. R. & Giauque, F. J. Am. chem. Soc. 64, 48–61 (1942).

    Article  CAS  Google Scholar 

  17. Lau, Y. K., Ikuta, S. & Kebarle, P. J. Am. chem. Soc. 104, 1462–1469 (1982).

    Article  CAS  Google Scholar 

  18. Austin, J. A., Garcia, R. R., Russell, J. M., Solomon, S. & Tuck, A. F. J. geophys. Res. 90, 5477–5485 (1986).

    Article  ADS  Google Scholar 

  19. Evans, W. J. F., McElroy, C. T. & Galbally, J. E. Geophys. Res. Lett. 12, 825–828 (1985).

    Article  ADS  CAS  Google Scholar 

  20. DeMore, W. B. et al. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, JPL Publication 85–37 (NASA Jet Propulsion Laboratory, California, 1985).

    Google Scholar 

  21. Crutzen, P. J. & Schmailzl, U. Planet. Space Sci. 31, 1009–1032 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Labitzke, K. J. geophys. Res. 86, 9665–9678 (1981).

    Article  ADS  Google Scholar 

  23. Berg, W. W., Crutzen, P. J., Grahek, F. E., Gitlin, S. N. & Sedlacek, W. A. Geophys. Res. Lett. 7, 937–940 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Berg, W. W., Heidt, L. E., Pollock, W., Sperry, P. D. & Cicerone, R. J. Geophys. Res. Lett. 11, 429–432 (1984).

    Article  ADS  CAS  Google Scholar 

  25. Molina, L. T. & Molina, M. J. phys. Chem. (submitted).

  26. McCormick, M. P. & Trepte, C. R. J. geophys. Res. (submitted).

  27. McKenzie, R. L. & Johnston, P. V. Geophys. Res. Lett. 11, 73–75 (1984).

    Article  ADS  CAS  Google Scholar 

  28. Shibasaki, K. in Handbook for MAP Vol 18 (ed. Kato, S.) 506–509 (SCOSTER, Univ. Illinois, 1985).

    Google Scholar 

  29. World Meteorological Organization Atmospheric Ozone 1985, WMO Rep. no. 16 (WMO, Geneva, 1985).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Crutzen, P., Arnold, F. Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime ‘ozone hole’. Nature 324, 651–655 (1986). https://doi.org/10.1038/324651a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324651a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing