Abstract
During development, cells become progressively restricted, until they reach their final phenotype. Differentiation was originally thought to be irreversible, but phenotypic plasticity has been observed in a variety of cell types, for example sympathetic neurones1, the limb blastema2 and some glial cell types3. A detailed description of the individual steps that lead to expression or reversal of phenotype is essential to understand the molecular events underlying cell differentiation. We examined whether ciliary neurones acquire adrenergic properties when exposed to a permissive embryonic environment. Cholinergic neurones were selectively labelled with a retrogradely transported marker and injected into chick embryos during active neural crest migration4. Four to five days after injection, some of the labelled neurones were found in ‘adrenergic sites’ and had developed catecholamine histofluorescence. The cells had thus accumulated adrenergic neurotransmitters even after differentiation into Cholinergic neurones. This result shows that neurotransmitter plasticity occurs in Cholinergic neurones and suggests that the neurotransmitter phenotype can be modified by the embryonic environment.
This is a preview of subscription content
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
References
Patterson, P. H. & Chun, L. L. Y. Proc. natn. Acad. Sci. U.S.A. 71, 3607–3610 (1974).
Brockes, J. P. Science 225, 1280–1287 (1984).
Raff, M. C., Miller, R. H. & Noble, M. Nature 303, 390–396 (1983).
Bronner, M. & Cohen, A. Proc. natn. Acad. Sci. U.S.A. 76, 1843–1847 (1979).
Le Douarin, N. M. The Neural Crest (Cambridge University Press, London, 1982).
Smith, J., Fauquet, M., Ziller, C. & Le Douarin, N. M. Nature 282, 853–855 (1979).
Cochard, P. & Colty, P. Devl Biol. 98, 221–238 (1983).
Barald, K. F. Neuronal Development (ed. Spitzer, N. C.) 110–119 (Plenum, New York and London, 1982).
Patterson, P. H. & Chun, L. L. Y. Devl Biol. 57, 268–280 (1977).
Patterson, P. H. & Chun, L. L. Y. Devl Biol. 60, 473–481 (1977).
Potter, D. D., Landis, S. C., Matsumoto, S. G. & Furschpan, E. J. J. Neurosci. 6, 1080–1098 (1986).
Johnson, M., Ross, D. et al. Nature 262, 308–310 (1976).
Furschpan, E., MacLeish, P., O'Lague, P.H. & Potter, D. Proc. natn. Acad. Sci. U.S.A. 73, 4225–4229.
Landis, S. & Keefe, D. Devl Biol. 98, 349–372 (1983).
Yodlowski, M., Fredieu, J. R. & Landis, S. C. J. Neurosci. 4, 1535–1548 (1984).
Leblanc, G. & Landis, S. C. J. Neurosci. 6, 260–265 (1986).
Bjorklund, H., Hokfelt, M., Goldstein, L., Terenus, L. & Olson, L. J Neurosci. 5, 1633–1640 (1985).
Le Douarin, N. M., Teillet, M. A., Ziller, C. & Smith, J. Proc. natn. Acad. Sci. U.S.A. 75, 2030–2034 (1978).
Dupin, E. Devl. Biol. 105, 288–299 (1984).
Katz, L. C., Burkhalter, A. & Dreyer, W. J. Nature 310, 498–500 (1984).
Drager, U. C., Edwards, D. L. & KJeinschmidt, J. Proc. natn. Acad. Sci. U.S.A. 80, 6408–6412 (1983).
Smith, J., Fauquet, M., Ziller, C. & Le Douann, N. M. Nature 282, 853–855 (1979).
Nishi, R. & Berg, D. Proc. natn. Acad. Sei. U S.A. 74, 5171–5175 (1977).
Teitelman, G. et al. J. Neurosci. 5, 29–39 (1985).
Iacovitti, I. et al. Devl Biol. 110, 402–412 (1985).
Colhns, F. & Dawson, A. Proc. natn. Acad. Sci. U.S.A. 80, 2091–2094 (1983).
Bronner-Fraser, M. Devl Biol. 113, 44–55 (1986).
Enemar, A., Falck, B. & Hakanson, R. Devl Biol. 11, 268–283 (1965).
Le Douarin, N. M. Expl. Cell Res. 77, 459–468 (1973).
Roher, H. & Sommer, I. J. Neurosci. 3, 1683–1693 (1983).
Bronner-Fraser, M. E. Devl Biol. 91, 50–63 (1982).
Le Douarin, N. M. & Teillet, M. A. Devl Biol. 41, 162–184 (1974).
Howard, M. & Bronner-Fraser, M. J. Neurosci. 5, 3302–3309 (1985).
Perris, R. & Löfberg, J. Devl Biol. 113, 327–341 (1986).
Falck, B. & Owman, C. Acta Univ. lung. 2, 4–25 (1965).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Coulombe, J., Bronner-Fraser, M. Cholinergic neurones acquire adrenergic neurotransmitters when transplanted into an embryo. Nature 324, 569–572 (1986). https://doi.org/10.1038/324569a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/324569a0
Further reading
-
Cell lineage analysis reveals multipotency of some avian neural crest cells
Nature (1988)
-
Increased neuropeptide Y-immunoreactive innervation of aganglionic bowel in Hirschsprung's disease
Virchows Archiv A Pathological Anatomy and Histopathology (1987)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.