Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Weakening of rock salt by water during long-term creep

Abstract

The rheological properties of rock salt are of fundamental importance in predicting the long-term evolution of salt-based radioactive waste repositories and strategic storage caverns, and in modelling the formation of salt diapirs and associated oil traps1,2. The short-term, high-stress rheology of rock salt is well known from laboratory experiments; however, extrapolation to appropriately low stresses fails to predict the rapid flow seen in certain natural structures. Furthermore, experiments have failed to reproduce the recrystallized microstructure of naturally deformed salt. Here we report experiments indicating that the above discrepancies can be explained by taking into account the influence of trace amounts of brine. Trace brine is always present in natural salt but sometimes escapes during experiments. Our tests on dry dilated salt show more or less conventional dislocation creep behaviour, but brine-bearing samples show marked weakening at low strain rates. This is associated with dynamic recrystallization and a change of deformation mechanism to solution transfer creep. Because natural rock salt always contains some brine, these results cast substantial doubt on the validity of presently accepted dislocation creep laws for predicting the long-term rheological behaviour of salt in nature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Carter, N. L. & Hansen, F. D. Tectonophysics 92, 275–333 (1983).

    Article  ADS  Google Scholar 

  2. Jackson, M. & Talbot, C. J. Bull. geol. Soc. Am. 97, 305–323 (1986).

    Article  Google Scholar 

  3. Langer, M. In Proc. 1st Conf. on the Mechanical Behaviour of Salt (eds Hardy, H. R. & Langer, M.) 201–240 (Trans-Tech, Clausthel-Zellerfeld, 1984).

    Google Scholar 

  4. Herrmann, W., Wawersik, W. R. & Lauson, H. S. Sandia natn. Lab. Rep. No. SAND80-2712 (1980).

  5. Wawersik, W. R., Herman, W., Montgomery, S. T. & Lauson, S. in Proc. int. Symp. Rock Mechanics related to Caverns and Pressure Shafts (ed. Wittke, W.) 1345–1356 (Balkema, Amsterdam, 1982).

    Google Scholar 

  6. Skrotzki, W. & Welch, P. Tectonophysics 99, 47–61 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Carter, N. L., Hansen, F. D. & Senseny, P. E. J. geophys. Res. 87, 9289–9300 (1982).

    Article  ADS  Google Scholar 

  8. Spiers, C. J., Urai, J. L., Lister, G. S., Boland, J. N. & Zwart, H. J. in Nuclear Science and Technology (Office for Official Publs. of the European Communities, Luxembourg).

  9. Urai, J. L., Spiers, C. J., Liezenberg, J. L., Franssen, R. C. & Peach, C. J. Geol. Minb. (in the press).

  10. Müller, H. G. Z. Phys. 96, 279–327 (1935).

    Article  ADS  Google Scholar 

  11. Friedman, M., Dula, W. F., Gangi, A. F. & Gazonas, G. A. in Proc. 1st Conf. on the Mechanical Behaviour of Salt (eds Hardy, H. R. & Langer, M.) 19–36 (Trans-Tech, Clausthel-Zellerfeld, 1984).

    Google Scholar 

  12. Guillope, M. & Poirier, J. P. J. geophys. Res. 84, 5557–5567 (1979).

    Article  ADS  Google Scholar 

  13. Talbot, C. J. & Rogers, E. A. Science 208–395 (1980).

  14. Talbot, C. J. Spec. Pap. geol. Soc. Am. 9, 173–184 (1981).

    Article  Google Scholar 

  15. Wenkert, D. D. Geophys. Res. Lett. 6, 523–526 (1979).

    Article  ADS  Google Scholar 

  16. Roedder, E. A. Miner. 69, 413–439 (1984).

    CAS  Google Scholar 

  17. Urai, J. L. Tectonophysics 96, 125–157 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Raj, R. J. geophys. Res. 87, 4731–4739 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Lehner, F. K. & Bataille, J. Pure appl. Geophys. 122, 53–85 (1984).

    Article  ADS  Google Scholar 

  20. Raj, R. & Ashby, M. F. Metall. Trans. 2, 1113–1127 (1971).

    Article  Google Scholar 

  21. Ruhenbeck, C. Z. Physik. 207, 446–469 (1967).

    Article  ADS  Google Scholar 

  22. Green, A. K. & Bauser, E. J. appl. Phys. 39, 2769–2779 (1968).

    Article  ADS  CAS  Google Scholar 

  23. Jockwer, N. thesis, Tech. Univ. Clausthal (1981).

  24. Spiers, C. J., Urai, J. L. & Lister, G. S. in Proc. 2nd Conf. Mechanical Behaviour of Salt Hannover (in the press).

  25. Heard, H. C. Am. geophys. Un. Geophys. Monogr. 16, 191–209 (1972).

    Google Scholar 

  26. Urai, J. L., Means, W. D. & Lister, G. S. Am. geophys. Un. Geophys. Monogr. 36, 161–199 (1986).

    Google Scholar 

  27. Urai, J. L. Tectonophysics 120, 285–317 (1985).

    Article  ADS  CAS  Google Scholar 

  28. Albrecht, H. & Hunsche, U. Fortschr. Miner. 58, 212–247 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urai, J., Spiers, C., Zwart, H. et al. Weakening of rock salt by water during long-term creep. Nature 324, 554–557 (1986). https://doi.org/10.1038/324554a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324554a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing