Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Implications of fragile X expression in normal males for the nature of the mutation

Abstract

The fragile site at Xq27, associated with a common form of X-linked mental retardation (XLMR)1, is expressed in a variable proportion of the peripheral lymphocytes of affected males when the cells are cultured under thymidylate stress (Td stress) produced by folate or thymidylate deprivation. Some clinically normal males—transmitting males—are known to carry and transmit the fragile X mutation and yet show no cytogenetic expression in lymphocytes2,3. Normal males with no family history of X-linked mental retardation express the site only rarely. When the fragile X chromosome from affected males is isolated in a rodent genetic background by somatic cell hybridization, the level of expression is similar to that seen in lymphocytes under Td stress4–6. Here we show that X chromosomes from two transmitting males and two normal control males, all of which were fragile X negative in lymphocytes or lymphoblasts, could be made to express the fragile site in hybrids, although at levels that were below those seen in hybrids from affected males. Furthermore, transmitting males could be differentiated from normal males by their significantly higher expression rates when hybrids were exposed to caffeine7 before cytogenetic harvest. One male chimpanzee also showed low level expression in hybrid cells. These data suggest that (1) the hybrid system lowers the threshold for fragile X expression, (2) a fragile site at Xq27 may be present on all human and chimpanzee X chromosomes and constitutes a previously unrecognized common fragile site and (3) the hybrid system with caffeine post-treatment can distinguish between the common Xq27 fragile site of control males, the occult mutant fragile site of a transmitting male, and the fully expressed fragile site of an affected male with XLMR. Thus the mutation producing XLMR may represent a multi-step alteration of a naturally occurring DNA sequence producing a continuum of cytogenetic expression and a threshold for clinical manifestation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sutherland, G. R., Hecht, F., Mulley, J. C., Glover, T. W. & Hecht, B. K. (eds) Fragile Sites on Human Chromosomes, 304 (Oxford University Press, New York, 1985).

  2. Froster-Iskenius, U., McGillivray, B. C., Dill, F. J., Hall, J. G. & Herbst, D. S. Am. J. med. Genet. 232, 619–632 (1986).

    Article  Google Scholar 

  3. Howard-Peebles, P. N. & Friedman, J. M. Am. J. hum. Genet. 37, 956–964 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Nussbaum, R. L., Airhart, S. D. & Ledbetter, D. H. Hum. Genet. 64, 148–150 (1983).

    Article  CAS  Google Scholar 

  5. Nussbaum, R. L., Walmsley, R. M., Lesko, J. G., Airhart, S. D. & Ledbetter, D. H. Am. J. hum. Genet. 37, 1192–1205 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ledbetter, D. H., Airhart, S. D. & Nussbaum, R. L. Am. J. med. Genet. 23, 429–444 (1986).

    Article  CAS  Google Scholar 

  7. Ledbetter, D. H., Airhart, S. D. & Nussbaum, R. L. Am. J. med. Genet. 23, 445–456 (1986).

    Article  CAS  Google Scholar 

  8. Warren, S. T. & Davidson, R. L., Somat. Cell molec. Genet. 10, 409–413 (1984).

    Article  CAS  Google Scholar 

  9. Rhoads, F. A., Oglesby, A. C., Mayer, M. & Jacobs, P. A. Am. J. med. Genet. 12, 205–217 (1982).

    Article  CAS  Google Scholar 

  10. Brown, W. T., Gross, A. C., Chan, C. B. & Jenkins, E. C. Hum. Genet. 71, 11–18 (1985).

    Article  CAS  Google Scholar 

  11. Steinbach, P. Hum. Genet. 72, 248–252 (1986).

    Article  CAS  Google Scholar 

  12. Sherman, S. L., Jacobs, P. A., Morton, N. E., Froster-Iskenius, U. & Howard-Peebles, P. N. Hum. Genet. 69, 289–299 (1985).

    Article  CAS  Google Scholar 

  13. Jenkins, E. C., Brown, W. T., Brooks, J., Duncan, C. J., Sanz, M. M. et al. Expl Cell Biol. 54, 40–48 (1986).

    CAS  Google Scholar 

  14. Berger, R., Bloomfield, C. D. & Sutherland, G. R. Cytogenet. Cell Genet. 40, 490–535 (1985).

    Article  CAS  Google Scholar 

  15. Glover, T. W. in Fragile Sites on Human Chromosomes (eds Sutherland, G. R., Hecht, F., Mulley, J. C., Glover, T. W., Hecht, B. K.) 80–94 (Oxford University Press, New York, 1985).

    Google Scholar 

  16. Yunis, J. J. & Soreng, A. L. Science 226, 1199–1204 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Daniel, A. Am. J. med. Genet. 23, 419–427 (1986).

    Article  CAS  Google Scholar 

  18. Glover, T. W., Coyle-Morris, J. & Morgan, R. Cancer Genet. Cytogenet. 19, 141–150 (1986).

    Article  CAS  Google Scholar 

  19. Abruzzo, M. A., Pettay, D., Mayer, M. & Jacobs, P. A. Hum. Genet. 73, 20–22 (1986).

    Article  CAS  Google Scholar 

  20. Pembrey, M. E., Winter, R. M. & Davies, K. E. Am. J. med. Genet. 21, 709–718 (1985).

    Article  CAS  Google Scholar 

  21. Opitz, J. M. Am. J. med. Genet. 23, 1–10 (1986).

    Article  CAS  Google Scholar 

  22. Nussbaum, R. L., Airhart, S. D. & Ledbetter, D. H. Am. J. med. Genet. 23, 715–722 (1986).

    Article  CAS  Google Scholar 

  23. Brown, W. T., Gross, A. C., Chan, C. B. & Jenkins, E. C. Am. J. med. Genet. 23, 643–664 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledbetter, D., Ledbetter, S. & Nussbaum, R. Implications of fragile X expression in normal males for the nature of the mutation. Nature 324, 161–163 (1986). https://doi.org/10.1038/324161a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324161a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing