Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bent DNA at a yeast autonomously replicating sequence

Abstract

DNA fragments that show retarded electrophoretic mobility through poly aery lamide gels have been found in both prokaryotes and eukaryotes1–7. In the case of kinetoplast DNA, evidence has been presented that the DNA is curved or ‘bent’8,9. Bent DNA has previously been found at the λ and simian virus 40 (SV40) DNA replication origins6,7. Here we show the existence of bent DNA at a yeast autonomously replicating sequence (ARS1), a putative replication origin. The bent DNA has been localized to a 40–55 base pair (bp) segment and contains six (A)3–5 stretches (that is, six poly(A) stretches, three to five nucleotides in length) phased approximately every 10.5 bp. This region contains a DNA binding site for a yeast protein factor. This site lies at the 3′ end of the TRP1 gene, in a region devoid of nucleosomes, and is positioned 80 bp away from the ARS consensus sequence; removal of this region impairs ARS function in vivo. The bent DNA may be involved in transcription termination or the prevention of nucleosome assembly in this region.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bossi, L. & Smith, D. M. Cell 39, 643–652 (1984).

    Article  CAS  Google Scholar 

  2. Simpson, L. Proc. natn. Acad. Sci. U.S.A. 76, 1585–1588 (1979).

    Article  ADS  CAS  Google Scholar 

  3. Ross, W., Schulman, M. & Landy, A. J. molec. Biol. 156, 505–529 (1982).

    Article  ADS  Google Scholar 

  4. Stellwagen, N. C. Biochemistry 22, 6186–6193 (1983).

    Article  CAS  Google Scholar 

  5. Chalberg, S. S. & Englund, P. T. J. molec. Biol. 138, 447–472 (1980).

    Article  Google Scholar 

  6. Zahn, K. & Blattner, F. R. Nature, 317, 451–453 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Ryder, K., Silver, S., DeLucia, A. L., Fanning, E. & Tegtmeyer, P., Cell, 44, 719–725 (1986).

    Article  CAS  Google Scholar 

  8. Marini, L. C., Levene, S. D., Crothers, D. M., & Englund, P. T. Proc. natn. Acad. Sci. U.S.A. 79, 7664–7668. (1982).

    Article  ADS  CAS  Google Scholar 

  9. Hagerman, P. J. Proc. natn. Acad. Sci. U.S.A. 81, 4632–4636 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Campbell, J. L. Genet. Engng. 5, 109–155 (1983).

    Article  CAS  Google Scholar 

  11. Newlon, C. S., Devenish, R. J., Suci, P. A. & Roffis, C. J. ICN-UCLA Symp. molec. cell. Biol., 22, 501–516 (1981).

    CAS  Google Scholar 

  12. Saffer, L. D. & Miller, O. L. Molec. cell. Biol., 6, 1148–1157 (1986).

    Article  CAS  Google Scholar 

  13. Stinchcomb, D. C., Mann, C., Selker, E. & Davis, R. W. in The Initiation of DNA Replication and Segregation of Yeast Chromosomes. Vol. 3 (ed. Ray, D. S.) 473–488 (Academic, New York, 1981).

    Book  Google Scholar 

  14. Broach, J. R. et al. Cold Spring Harb. Symp. Quant. Biol. 47, 1165–1173 (1982).

    Article  CAS  Google Scholar 

  15. Celniker, S. E., Sweder, K., Srienc, F., Bailey, J. E. & Campbell, J. L. Molec. cell. Biol. 4, 2455–2466 (1984).

    Article  CAS  Google Scholar 

  16. Kearsey S. Cell 37, 299–307 (1984).

    Article  CAS  Google Scholar 

  17. Koshland, D., Kent, J. C. & Hartwell, L. H. Cell 40, 393–403 (1985).

    Article  CAS  Google Scholar 

  18. Srienc, F., Bailey, J. E. & Campbell, J. L. Molec. Cell. Biol. 5, 1676–1684 (1985).

    Article  CAS  Google Scholar 

  19. Diekmann, S. & Wang, J. C. J. molec. Biol. 186, 1–11 (1985).

    Article  CAS  Google Scholar 

  20. Buchman, A., Kimmerly, W., Rine, J. & Kornberg, R. (manuscript in preparation).

  21. Wu, H. & Crothers, D. M. Nature 308, 509–513. (1984).

    Article  ADS  CAS  Google Scholar 

  22. Koo, H. S., Wu, H.-M., & Crothers, D. M. Nature 320, 501–506. (1986).

    Article  ADS  CAS  Google Scholar 

  23. Tschumper, G., & Carbon, J. Gene 10, 157–166 (1980).

    Article  CAS  Google Scholar 

  24. Buchman, A. R., & Kornberg, R. (manuscript in preparation).

  25. Hieter, P., Mann, C., Snyder, M. & Davis, R. W. Cell 40, 381–392 (1985).

    Article  CAS  Google Scholar 

  26. Zahn, K., & Blattner, F. R. EMBO J. 4, 3605–3616 (1985).

    Article  CAS  Google Scholar 

  27. Thoma, F., Bergman, L. W., & Simpson, R. T. J. molec. Biol., 177, 715–733 (1984).

    Article  CAS  Google Scholar 

  28. Thoma, F. & Simpson, R. T. Nature, 315, 250–252 (1985).

    Article  ADS  CAS  Google Scholar 

  29. Varshavsky, A. J., Sundon, O. & Bohm, M. Cell 16, 453–466, (1979).

    Article  CAS  Google Scholar 

  30. Jakobovits, E. B., Brutosom, S. & Aloni, Y. Nature 285, 263–265, (1980).

    Article  ADS  CAS  Google Scholar 

  31. Saragosti, S., Moyne, G. & Yaniv, M. Cell 20, 65–73, (1980).

    Article  CAS  Google Scholar 

  32. Snyder, M. & Davis, R. W. (manuscript in preparation).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, M., Buchman, A. & Davis, R. Bent DNA at a yeast autonomously replicating sequence. Nature 324, 87–89 (1986). https://doi.org/10.1038/324087a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324087a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing