Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mapping human visual cortex with positron emission tomography

Abstract

Positron-emission tomography (PET) can localize functions of the human brain by imaging regional cerebral blood flow (CBF) during voluntary behaviour. Functional brain mapping with PET, however, has been hindered by PET's poor spatial resolution (typically >1 cm). We have developed an image-analysis strategy that can map functional zones not resolved by conventional PET images. Brain areas selectively activated by a behavioural task can be isolated by subtracting a paired control-state image from the task-state image, thereby removing areas not recruited by the task. When imaged in isolation the centre of an activated area can be located very precisely. This allows subtle shifts in response locale due to changes in task to be detected readily despite poor spatial resolution. As an initial application of this strategy we mapped the retinal projection topography of human primary visual cortex. Functional zones separated by less than 3 mm (centre-to-centre) were differentiated using PET CBF images with a spatial resolution of 18 mm. This technique is not limited to a particular brain area or type of behaviour but does require that the increase in CBF produced by the task be both intense and focal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yamamoto, M., Ficke, D. C. & Ter-Pogossian, M. M. IEEE Trans. nucl. Sci. 29, 529–533 (1982).

    Article  ADS  Google Scholar 

  2. Lahti, B. P. Signals, Systems, and Communication, 437–441 (New York, 1965).

    Google Scholar 

  3. Westheimer, G. Invest, ophthal. vis. Sci. 18, 893–912 (1979).

    CAS  Google Scholar 

  4. Fox, P. T. & Raichle, M. E. Proc. natn. Acad. Sci. U.S.A. 83, 1140–1144 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Fox, P. T. & Raichle, M. E. J. Neurophysiol. 51, 1109–1120 (1984).

    Article  CAS  Google Scholar 

  6. Herscovitch, P., Markham, J & Raichle, M. E. J. nucl. Med. 24, 782–789 (1983).

    CAS  PubMed  Google Scholar 

  7. Raichle, M. E., Martin, W. R. W., Herscovitch, P., Mintun, M. A. & Markham, J. J. nucl. Med. 24, 790–798 (1983).

    CAS  PubMed  Google Scholar 

  8. Fox, P. T., Fox, J. M., Raichle, M. E. & Burde, R. M. J. Neurophysiol. 54, 348–369 (1985).

    Article  CAS  Google Scholar 

  9. Fox, P. T., Perlmutter, J. S. & Raichle, M. E. J. Comput. Assist. Tomogr. 9, 141–153 (1985).

    Article  CAS  Google Scholar 

  10. Daniel, P. M. & Whitteridge, D. J. Physiol., Lond. 159, 203–221 (1961).

    Article  CAS  Google Scholar 

  11. Cowey, A. & Rolls, E. T. Expl Brain Res. 21, 447–454 (1974).

    Article  CAS  Google Scholar 

  12. Rovamo, J. & Virsu, V. Expl Brain Res. 37, 495–510 (1979).

    Article  CAS  Google Scholar 

  13. Holmes, G. Br. J. Ophthal. 2, 353–384 (1918).

    Article  CAS  Google Scholar 

  14. Spalding, J. M. D. J. Neurol. Neurosurg. Psychiat. 15, 169–183 (1952).

    Article  CAS  Google Scholar 

  15. Teuber, H., Battersby, W. & Bender, M. Visual Field Deficits after Penetrating Missile Wounds (Harvard University Press, Cambridge, 1960).

    Book  Google Scholar 

  16. McAuley, D. L. & Ross-Russell, R. W. J. Neurol. Neurosurg. Psychiat. 42, 298–311 (1979).

    Article  CAS  Google Scholar 

  17. Brindley, G. S. in Handbook of Sensory Physiology 7 (3B) (ed. Jung, R.) 583–594 (Springer, Berlin, 1973).

    Google Scholar 

  18. Dobelle, W. H. & Mladejovsky, M. G. J. Physiol., Lond. 243, 553–576 (1974).

    Article  CAS  Google Scholar 

  19. Maclin, E., Okada, Y. C., Kaufman, L. & Williamson, S. J. Nuov. Cim. 2, 410–419 (1983).

    Article  ADS  Google Scholar 

  20. Van Essen, D. C., Newsome, W. T. & Maunsell, J. H. R. Vision Res. 24, 429–448 (1984).

    Article  CAS  Google Scholar 

  21. Talbot, S. A. & Marshall, W. H. Am. J. Ophthal. 24, 1255 (1941).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, P., Mintun, M., Raichle, M. et al. Mapping human visual cortex with positron emission tomography. Nature 323, 806–809 (1986). https://doi.org/10.1038/323806a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323806a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing