Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Kin selection and the problem of sperm utilization in social insects

Abstract

The evolution of social behaviour has posed a special problem for natural selection theory since Darwin. Sociality entails at least a partial loss of personal reproduction by some individuals, a seeming contradiction to the expectation that it be maximized by natural selection. The theory of kin selection1,2 seeks to explain social evolution by reference to high degrees of genetic relatedness among cooperating individuals. In the most diverse and conspicuous of social organisms, the social Hymenoptera (ants, bees, wasps), kin selection theory has been especially attractive because the malehaploid genetic system of the group leads to potentially high relatedness among female nestmates3–5. Multiple mating by queens poses a serious difficulty for kin selection, however, in that it reduces nestmate relatedness unless sperm from different males are used non-randomly6–10. This possibility has been investigated in only one highly social insect, the honey bee Apis mellifera, where the absence of suitable genetic markers has necessitated the use of artificial insemination10,11. In this first study of long-term sperm utilization in natural populations of highly social insects I show that queens of two social wasp species use sperm from different males in relatively constant proportions through time, resulting in consistently low relatedness among female nestmates. I also show that workers do not supplement their inclusive fitness by reproducing directly in colonies in which the mother queen is present.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hamilton, W. D. J. theor. Biol. 7, 1–52 (1964).

    Article  CAS  Google Scholar 

  2. Maynard Smith, J. Nature 201, 1145–1147 (1964).

    Article  Google Scholar 

  3. Wilson, E. O. The Insect Societies (Belknap, Cambridge, 1971).

    Google Scholar 

  4. Crozier, R. H. in Social Insects, Vol. 1 (ed. Hermann, H.) 223–287 (Academic, New York, 1979).

    Google Scholar 

  5. Starr, C. K. in Social Insects, Vol. 1 (ed. Hermann, H.) 35–79 (Academic, New York, 1979).

    Google Scholar 

  6. Hamilton, W. D. A. Rev. Ecol. Syst. 3, 193–232 (1972).

    Article  Google Scholar 

  7. West-Eberhard, M. J. Q. Rev. Biol. 50, 1–33 (1975).

    Google Scholar 

  8. Crozier, R. H. & Brückner, D. Am. Nat. 117, 561–563 (1981).

    Article  Google Scholar 

  9. Starr, C. K. in Sperm Competition and the Evolution of Animal Mating Systems (ed. Smith, R. L.) 427–464 (Academic, New York, 1984).

    Book  Google Scholar 

  10. Page, R. E. A. Rev. Entomol. 31, 297–320 (1986).

    Article  Google Scholar 

  11. Laidlaw, H. H. & Page, R.E. Genetics 108, 985–997 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Archer, M. E. in Social Wasps, Their Biology and Control (ed. Edwards, R.) 172–207 (Rentokil, East Grinstead, 1980).

    Google Scholar 

  13. Iwasa, Y. J. theor. Biol. 93, 125–142 (1981).

    Article  Google Scholar 

  14. Bartz, S. H. Behav. Ecol. Sociobiol. 11, 223–228 (1982).

    Article  Google Scholar 

  15. Pamilo, P., Behav. Ecol. Sociobiol. 15, 241–248 (1984).

    Article  Google Scholar 

  16. Fletcher, D. J. C. & Ross, K. G. A. Rev. Entomol. 30, 319–343 (1985).

    Article  Google Scholar 

  17. Ross, K. G. J. Zool. (Lond.) 205, 411–424 (1985).

    Article  Google Scholar 

  18. Ross, K. G. & Fletcher, D. J. C. Behav. Ecol. Sociobiol. 17, 349–356 (1985).

    Article  Google Scholar 

  19. West-Eberhard, M. J. in Natural Selection and Social Behavior: Recent Research and New Theory (eds Alexander, R. D. & Tinkle, D. W.) 3–17 (Chiron, New York, 1981).

    Google Scholar 

  20. Alexander, R. D. A. Rev. Ecol. Syst. 5, 325–383 (1974).

    Article  Google Scholar 

  21. Evans, H. E. Bioscience 27, 613–617 (1977).

    Article  Google Scholar 

  22. Crozier, R. H. & Page, R. E. Behav. Ecol. Sociobiol. 18, 105–115 (1985).

    Article  Google Scholar 

  23. Pamilo, P. Genetics 107, 307–320 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wade, M. J. J. theor. Biol. 95, 351–368 (1982).

    Article  CAS  Google Scholar 

  25. Ross, K. G., Fletcher, D. J. C. & May, B. Biochem. Syst. Ecol. 13, 29–33 (1985).

    Article  CAS  Google Scholar 

  26. Ishay, J. Anim. Behav. 23, 425–431 (1975).

    Article  Google Scholar 

  27. MacDonald, J. F. & Matthews, R. W. J. Kans. ent. Soc. 54, 433–457 (1981).

    Google Scholar 

  28. MacDonald, J. F. & Matthews, R. W. J Kans. ent. Soc. 57, 134–151 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, K. Kin selection and the problem of sperm utilization in social insects. Nature 323, 798–800 (1986). https://doi.org/10.1038/323798a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323798a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing