Letter | Published:

Calbindin immunoreactivity alternates with cytochrome c-oxidase-rich zones in some layers of the primate visual cortex

Abstract

Calcium ions have a pivotal role in many neuronal activities1, but little is known about their involvement in the cortical processing of visual information2. Using immunohistochemical methods, we have now detected a calcium-binding protein, calbindin-D-28K (ref. 3, calbindin), which may confer on certain compartments of cortical area 17 the ability to modulate Ca2+ metabolism. Thus, calbindin occurs in the primate striate cortex in a pattern almost complementary to that displaying strong cytochrome c-oxidase activity. From this and other observations, we deduce that the distribution of calbindin-immunoreactive sites corresponds mainly to extra-geniculocortical connections of the primary visual cortex. This implies that the geniculocortical and extra-geniculocortical compartments of area 17 differ in an intracellular system for Ca2+ homeostasis.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Kretsinger, R. H. Neurosci. Res. Prog. Bull. 19, 213–328 (1981).

  2. 2

    Singer, W. Vision Res. 25, 389–396 (1985).

  3. 3

    Wassermann, R. H. in Vitamin D (eds Norman, A. W., Schaefer, K., Grigolet, H. G. & Herrath, D.) 321 (De Gruyter, Berlin, 1985).

  4. 4

    Wassermann, R. H. & Taylor, A. N. Science 152, 791 (1966).

  5. 5

    Norman, A. W., Roth, J. & Orci, L. Endocr. Rev. 3, 331–366 (1982).

  6. 6

    Wassermann, R. H. & Fullmer, C. S. in Calcium and Cell Function (ed. Cheung, W.) 175 (Academic, New York, 1982).

  7. 7

    Baimbridge, K. G. & Miller, J. J. Brain Res. 324, 85–90 (1984).

  8. 8

    Christakos, S., Friedlander, E. J., Frandsen, B. R. & Norman, A. W. Endocrinology 104, 1495 (1979).

  9. 9

    Carroll, E. W. & Wong-Riley, M. T. T. J. comp. Neurol. 222, 1 (1984).

  10. 10

    Macchi, G. & Bentivoglio, M. Ital. J. neurol. Sci. 2, 83–96 (1982).

  11. 11

    Tigges, J. & Tigges, M. in Cerebral Cortex Vol. 3 (eds Peters, A. & Jones, E. G.) 351–378 (Plenum, New York, 1985).

  12. 12

    Doty, R. W. J. comp. Neurol. 218, 159 (1983).

  13. 13

    Van Essen, D. C. in Cerebral Cortex Vol. 3 (eds Peters, A. & Jones, E. G.) 259 (Plenum, New York, 1985).

  14. 14

    Celio, M. R. & Norman, A. W. Anat. Embryol. 173, 143–148 (1985).

  15. 15

    Garcia-Segura, L. M., Baetens, D., Roth, J., Norman, A. W. & Orci, L. Brain Res. 296, 75–86 (1984).

  16. 16

    Heizmann, C. W. Experientia 40, 910–921 (1984).

  17. 17

    Hubel, D. Nature 299, 515–524 (1982).

  18. 18

    Celio, M. R., Schärer, L., Morrison, J. H., Norman, A. W. & Bloom, F. E. Soc. Neurosci. Abstr. 10, 1 (1983).

  19. 19

    Wong-Riley, M. Brain Res. 171, 11 (1979).

  20. 20

    Livingstone, M. S. & Hubel, D. H. Proc. natn. Acad. Sci. U.S.A. 79, 6098 (1982).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.