Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Isotopic composition of osmium in terrestrial samples determined by accelerator mass spectrometry

Abstract

Interest has revived in the rhenium/osmium system due to significant advances in detection methods1–4 and because of its use for the identification of extraterrestrial material at the Cretaceous/Tertiary boundary5. Another, perhaps more important application is its use as a tracer for the origin of crustal material. This application is, however, severely restricted by the very low concentrations typical of crustal rocks. We present here the first results for the isotopes 187Os, 188Os, and 189Os measured in sub-p.p.b. (parts per 109) level samples by accelerator mass spectrometry (AMS). Our first exploratory measurements on extraterrestrial and crustal material with Os concentrations between 2 p.p.m. (parts per 106) and 0.006 p.p.b. show a detection limit of 0.01 p.p.b. and a precision of better than 10%. The 187Os/186Os ratios measured for samples for the Canyon Diablo meteorite and from the East Clearwater crater in Quebec, Canada, were close to 1, typical of extraterrestrial material. In contrast, ratios in samples from the Ries crater in Germany were around 10, which is evidence of predominantly crustal osmium in these rocks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Allègre, C. J. & Luck, J. M. Earth planet Sci. Lett. 48, 148–154 (1980).

    Article  ADS  Google Scholar 

  2. Russ, G. P., Bazan, J. M. & Date, A. R. Nucl. Chem. Div. A. Rep. FY84 (Lawrence Livermore National Laboratory, Livermore, 1984).

  3. Fassett, J. D., Moore, L. J., Travis, J. C. & DeVoe, J. R. Science 230, 262–267 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Palmer, M. R. & Turekian, K. K. Nature 319, 216–220 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Luck, J. M. & Turekian, K. K. Science 222, 613–615 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Morgan, J. W. & Lovering, J. F. Earth planet Sci. Lett. 3, 219–224 (1967).

    Article  ADS  CAS  Google Scholar 

  7. Morgan, J. W., Janssens, M.-J., Hertogen, J., Gros, J. & Takahashi, H. Geochim. cosmochim. Acta 43, 803–815 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Turekian, K. K. Geol. Soc. Am. Spec. Pap. 190, 243–247 (1982).

    CAS  Google Scholar 

  9. Turekian, K. K. & Luck, J. M. Proc. natn. Acad. Sci. U.S.A. 81, 8032–8034 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Luck, J. M. & Allègre, C. J. Nature 302, 130–132 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Lindner, D. A. et al. Nature 320, 24x–248 (1986).

    Article  Google Scholar 

  12. Faure, G. Principles of Isotope Geology (Wiley, New York, 1977).

  13. Luck, J. M. & Allègre, C. J. Earth planet Sci. Lett. 61, 291–296 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Nier, A. O. Phys. Rev. 52, 885 (1937).

    Article  ADS  CAS  Google Scholar 

  15. Elmore, D., Conard, N., Kubik, P. W. & Fabryka-Martin, J. Nucl. Instrum. Meth. B5, 233–237 (1984).

    Article  Google Scholar 

  16. Elmore, D. et al. 286, 138–140 (1980).

  17. Luck, J. M. thesis, Univ. Paris 7 (1982).

  18. Robért, R. V. D., van Wyk, E. & Palmer, R. Nat. Inst. Metall. Johannesburg, S. Af. Rep. 1371, 1–11 (1971).

    Google Scholar 

  19. Annegarn, H. J., Erasmus, C. S., Sellschop, J. P. F. & Tredoux, M. Nucl. Instrum. Meth. 218, 33–38 (1983).

    Article  CAS  Google Scholar 

  20. Annegarn, H. J., Erasmus, C. S. & Sellschop, J. P. F. Nucl. Instrum. Meth. B3, 181–184 (1984).

    Article  Google Scholar 

  21. Teng, R. T. D. thesis, Univ. Rochester (1986).

  22. Hoffman, E. L., Naldrett, A. J. & Van Loon, J. C. Analyt. chem. Acta 102, 157–166 (1978).

    Article  CAS  Google Scholar 

  23. Sellschop, J. P. F. & Tredoux, M. Preprint, Univ. Witwatersrand, Johannesburg, Council Sci. Ind Res.: Schonland Res. Cen. Nucl. Sci. (1985).

  24. Palme, H., Göbel, E. & Grieve, R. A. F. Proc. 10th Lunar planet. Sci. Conf., 2465–2492 (1979).

  25. Werner, E. Alb. Bl. Schwäb. Albvereins 16, 153–167 (1906).

    Google Scholar 

  26. Shoemaker, E. M. & Chao, E. C. T. J. geophys. Res. 66, 3371–3378 (1961).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fehn, U., Teng, R., Elmore, D. et al. Isotopic composition of osmium in terrestrial samples determined by accelerator mass spectrometry. Nature 323, 707–710 (1986). https://doi.org/10.1038/323707a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323707a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing