Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Voltage dependence of Na translocation by the Na/K pump

Abstract

During each complete reaction cycle, the Na/K pump transports three Na ions out across the cell membrane and two K ions in. The resulting net extrusion of positive charge generates outward membrane current1,2 but, until now, it was unclear how that net charge movement occurs2–7. Reasonable possibilities included a single positive charge moving outwards during Na translocation; or a single negative charge moving inwards during K translocation; or either positive or negative charges moving during both translocation steps, but in unequal quantities. Any step that involves net charge movement through the membrane must have voltage-dependent transition rates. Here we report measurements of transient, voltage-dependent, displacement currents generated by the pump when its normal Na/K transport cycle has been interrupted by removal of external K and it is thus constrained to carry out Na/Na exchange8. The quantity and voltage sensitivity of the charge moved during these transient currents suggests that Na translocation includes a voltage-dependent transition involving movement of one positive charge across the membrane. This single step can thus fully account for the electrogenic nature of Na/K exchange. The result provides important new insight into the molecular mechanism of active cation transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Thomas, R. C. Physiol. Rev. 52, 563–594 (1972).

    Article  CAS  Google Scholar 

  2. Glynn, I. M. in Electrogenic Transport: Fundamental Principles and Physiological Implications (eds Blaustein, M. P. & Lieberman, M.) 33–48 (Raven, New York, 1984).

    Google Scholar 

  3. Hansen, U-P., Gradmann, D., Sanders, D. & Slayman, C. L. J. Membrane Biol. 63, 165–190 (1981).

    Article  CAS  Google Scholar 

  4. Chapman, J. B., Johnson, E. A. & Kootsey, J. M. J. Membrane Biol. 74, 139–153 (1983).

    Article  CAS  Google Scholar 

  5. De Weer, P. in Electrogenic Transport: Fundamental Principles and Physiological Implications (eds Blaustein, M. P. & Lieberman, M.) 1–15 (Raven, New York, 1984).

    Google Scholar 

  6. Reynolds, J. A., Johnson, E. A. & Tanford, C. Proc. natn. Acad. Sci. U.S.A. 6869–6873 (1985).

  7. Läuger, P. & Apell, H.-J. Eur. Biophys. J. (in the press).

  8. Garrahan, P. J. & Glynn, I. M. J. Physiol., Lond. 192, 159–174 (1967).

    Article  CAS  Google Scholar 

  9. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  10. Soejima, M. & Noma, A. Pflügers Arch. ges. Physiol. 400, 424–431 (1984).

    Article  CAS  Google Scholar 

  11. Gadsby, D. C., Kimura, J. & Noma, A. Nature 315, 63–65 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Abercrombie, R. & De Weer, P. Am. J. Physiol. 235(1), C63–C68 (1978).

    Article  Google Scholar 

  13. Garrahan, P. J. & Glynn, I. M. J. Physiol., Lond. 192, 217–235 (1967).

    Article  CAS  Google Scholar 

  14. Garrahan, P. J. & Glynn, I. M. J. Physiol., Lond. 192, 189–216 (1967).

    Article  CAS  Google Scholar 

  15. Daut, J. & Rudel, R. J. Physiol., Lond. 330, 243–264 (1982).

    Article  CAS  Google Scholar 

  16. Karlish, S. J. D., Raphaeli, A. & Stein, W. D. in The Sodium Pump (eds Glynn, I. M. & Ellory, J. C.) 487–499 (Company of Biologists, Cambridge, 1985).

    Google Scholar 

  17. Eyring, H., Lumry, R. & Woodbury, J. M. Rec. Chem. Prog. 10, 100–114 (1949).

    CAS  Google Scholar 

  18. Milanick, M. A. & Hoffman, J. F. Biophys. J. 49, 548a (1986).

    Google Scholar 

  19. Glynn, I. M., Hara, Y. & Richards, D. E. J. Physiol., Lond. 351, 531–547 (1984).

    Article  CAS  Google Scholar 

  20. Glynn, I. M. & Hoffman, J. F. J. Physiol., Lond. 218, 239–256 (1971).

    Article  CAS  Google Scholar 

  21. Shull, G. E., Schwartz, A. & Lingrel, J. B. Nature 316, 691–695 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Isenberg, G. & Klockner, U. Pflügers Arch. ges. Physiol. 395, 6–18 (1982).

    Article  CAS  Google Scholar 

  23. Matsuda, H., Noma, A., Kurachi, Y. & Irisawa, H. Circulation Res. 51, 142–151 (1982).

    Article  CAS  Google Scholar 

  24. Garay, R. P. & Garrahan, P. J. J. Physiol., Lond. 231, 297–325 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakao, M., Gadsby, D. Voltage dependence of Na translocation by the Na/K pump. Nature 323, 628–630 (1986). https://doi.org/10.1038/323628a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323628a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing