Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-latitude salinity effects and interhemispheric thermohaline circulations

Abstract

A general circulation model for the ocean is used to investigate the interaction between the global-scale thermohaline circulation and the salinity distribution. It is shown that an equatorially asymmetric circulation can be maintained even under equatorially symmetric basin geometry and surface forcing. Multiple equilibrium solutions are obtained for the same forcing by perturbing the high–latitude salinity field in an otherwise equatorially symmetric initial condition. The timescale of the transition from the symmetric circulation to an asymmetric circulation depends critically on the sign of the initial salinity perturbation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Reid, J. L. & Lynn, R. J. Deep Sea Res. 18, 1063–1088 (1971).

    Google Scholar 

  2. Bryan, K. A. Rev. Earth planet. Sci. 10, 15–38 (1982).

    Article  ADS  Google Scholar 

  3. Boyle, E. A. & Keigwin, L. D. Science 218, 784–787 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Broecker, W. S., Peteet, D. M. & Rind, D. Nature 315, 21–26 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Weyl, P. K. Met. Monogr. 8, 37–62 (1968).

    Google Scholar 

  6. Walin, G. Palaeogeogr. Palaeoclimatol. Palaeoecol. 50, 323–332 (1985).

    Article  Google Scholar 

  7. Warren, B. A. J. mar. Res. 41, 327–347 (1983).

    Article  Google Scholar 

  8. Rooth, C. Prog. Oceanogr. 11, 131–149 (1982).

    Article  ADS  Google Scholar 

  9. Killworth, P. D. Rev. Geophys. Space Phys. 21, 1–26 (1983).

    Article  ADS  Google Scholar 

  10. Reid, J. L. Intermediate Waters of the North Pacific Ocean (Johns Hopkins University Press, Baltimore, 1965).

    Google Scholar 

  11. Bryan, F. Thesis, Princeton Univ. (1986).

  12. Cox, M. D. & Bryan, K. J. phys. Oceanogr. 14, 674–687 (1984).

    Article  ADS  Google Scholar 

  13. Bryan, K., Komro, F. G., Manabe, S. & Spelman, M. J. Science 215, 56–58 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Bryan, K. J. comput. Phys. 4, 347–376 (1969).

    Article  ADS  Google Scholar 

  15. Cox, M. D. Geophys. Fluid Dyn. Lab. Ocean Gp tech. Rep. No. 1 (Princeton University, 1984).

  16. Bryan, K. & Cox, M. D. J. phys. Oceanogr. 2, 510–514 (1972).

    Article  ADS  Google Scholar 

  17. Haney, R. L. J. phys. Oceanogr. 1, 241–248 (1971).

    Article  ADS  Google Scholar 

  18. Levitus, S. Climatological Atlas of the World Ocean (Natn. Oceans Atmos. Adm. prof. Pap. No. 13) (US Government Printing Office, Washington, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryan, F. High-latitude salinity effects and interhemispheric thermohaline circulations. Nature 323, 301–304 (1986). https://doi.org/10.1038/323301a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323301a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing