Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spatial heterogeneity: evolved behaviour or mathematical artefact?

A Corrigendum to this article was published on 31 March 1988

Abstract

For more than a century ecologists have sought to explain the spatial heterogeneity of plants and animals1, but progress has been hampered by measurement bias2. A measure thought to be an unbiased index of spatial heterogeneity3 is b, the fitted exponent in the empirical relationship s2 = aMb, where sa2 is the variance and M the average of randomly placed replicate population estimates4. This index is widely accepted because of the impressive correlation between s2 and M and because it requires no inter-organism distance measures. Theoretical models, based on migratory behaviour5 or demographic factors6, have been proposed to account for the relationship between s2 and M. These models disagree regarding the effect of environment on b and the divergence of b values shown by different species. Here I report data showing that species-specific b varies among environments and that different species often show similar b values, favouring the demographic model. Analysis of these data shows that different levels of replication and sampling coverage lead to biased b values, casting doubt on the use of b for the deduction of cause of spatial variance relationships or the comparative measurement of spatial heterogeneity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lussenhop, J. J. Hist. Biol. 7, 319–337 (1974).

    Article  Google Scholar 

  2. Green, R. H. Res. Pop. Ecol. 8, 1–7 (1966).

    Article  Google Scholar 

  3. Taylor, L. R. A. Rev. Entomol. 29, 321–357 (1984).

    Article  Google Scholar 

  4. Taylor, L. R., Woiwod, I. P. & Perry, J. N. J. Anim. Ecol. 47, 383–406 (1978).

    Article  Google Scholar 

  5. Taylor, L. R., Taylor, R. A. J., Woiwod, I. P. & Perry, J. N. Nature 303, 801–804 (1983).

    Article  ADS  Google Scholar 

  6. Anderson, R. M., Gordon, D. M., Crawley, M. J. & Hassell, M. P. Nature 296, 245–248 (1982).

    Article  ADS  Google Scholar 

  7. Taylor, L. R. in Statistical Ecology Vol. 1 (eds Patil, G. P., Pielou, E. C. & Waters, W. E.) 357–372 (Pennsylvania University Press, 1969).

    Google Scholar 

  8. Taylor, L. R. & Taylor, R. A. J. Nature 265, 415–420 (1977).

    Article  ADS  CAS  Google Scholar 

  9. Taylor, R. A. J. J. Anim. Ecol. 50, 573–586 (1981).

    Article  Google Scholar 

  10. Taylor, R. A. J. J. Anim. Ecol. 50, 587–604 (1981).

    Article  Google Scholar 

  11. Hanski, I. Ann. Zool. Fennici 19, 21–37 (1982).

    Google Scholar 

  12. Bartlett, M. S. Stochastic Population Models in Ecology and Epidemiology (Methuen, London, 1960).

    MATH  Google Scholar 

  13. May, R. M. Stability and Complexity in Model Ecosystems (Princeton University Press, 1973).

    Google Scholar 

  14. Tayor, L. R., Woiwod, I. P. & Perry, J. N. J. Anim. Ecol. 49, 831–854 (1980).

    Article  Google Scholar 

  15. Taylor, L. R. & Woiwod, I. P. J. Anim. Ecol. 51, 879–906 (1982).

    Article  Google Scholar 

  16. Taylor, L. R. Nature 189, 732–735 (1961).

    Article  ADS  Google Scholar 

  17. Dumont, H. J. Mem. Ist. Ital. Idrobiol. 22, 81–103 (1967).

    Google Scholar 

  18. Dumont, H. J. Hydrobiologia 32, 97–130 (1968).

    Article  Google Scholar 

  19. Beall, G. Biometrika 30, 422–439 (1938).

    Article  Google Scholar 

  20. Harcourt, D. G. Can. Ent. 95, 813–820 (1963).

    Article  Google Scholar 

  21. Koss, R. W., Jensen, L. D. & Jones, R. D. in Environmental Responses to Thermal Discharges from Marshall Steam Station (ed. Jensen, L. D.) 173–186 (Electric Power Research Institute, Palo Alto, California, 1973).

    Google Scholar 

  22. Hiltunen, J. Limnological data from Lake St Clair, 1963 and 1965 (NOAA-USA data report No. 54, 1971).

    Google Scholar 

  23. LaPerriere, J. D. Evaluation of the Trophic Types of Several Alaskan Lakes by Assessment of the Benthic Fauna Report IWR-63 (Alaskan Institute of Water Resources, Fairbanks, 1975).

    Google Scholar 

  24. Fleming, W. E. J. agric. Res. 53, 319–331 (1936).

    Google Scholar 

  25. Harcourt, D. G. Can. Ent. 93, 945–952 (1961).

    Article  Google Scholar 

  26. Kobayashi, S. Res. Pop. Ecol. 7, 109–117 (1965).

    Article  Google Scholar 

  27. McGuire, J. U., Brindley, T. A. & Bancroft, T. A. Biometrics 13, 65–78 (1957).

    Article  Google Scholar 

  28. Meyers, M. T. & Patch, L. H. J. agric. Res. 55, 849–871 (1937).

    Google Scholar 

  29. Cain, S. A. & Evans, F. C. Cont. Lab. Vert. Biol. Univ. Mich. 52, (1952).

  30. Cassie, R. M. N.Z. J. Sci. 3, 26–50 (1960).

    Google Scholar 

  31. Langeland, A. & Rognerud, S. Arch. Hydrobiol. 73, 403–410 (1974).

    Article  Google Scholar 

  32. Langford, R. R. & Jermolajev, E. G. Verh. Internat. Verein. Limnol. 16, 188–193 (1966).

    Google Scholar 

  33. Malone, B. J. & McQueen, D. J. Hydrobiologia 99, 101–124 (1983).

    Article  Google Scholar 

  34. McGowan, J. A. & Fraundorf, V. J. Limnol. Oceanogr. 11, 456–469 (1966).

    Article  Google Scholar 

  35. Mori, S. Mem. Fac. Sci., Kyoto Univ. 1, 78–94 (1967).

    Google Scholar 

  36. Paterson, C. G. & Walker, K. F. Aust. J. mar. Freshwater Res. 25, 151–165 (1974).

    Article  Google Scholar 

  37. Winsor, C. P. & Clarke, G. L. J. mar. Res. 3, 1–34 (1940).

    Google Scholar 

  38. Guest, P. G. Numerical Methods of Curve Fitting (Cambridge University Press, 1961).

    MATH  Google Scholar 

  39. Ricker, W. E. J. Fish Res. Board Can. 30, 409–434 (1973).

    Article  Google Scholar 

  40. Prepas, E. E. in A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters (eds Downing, J. A. & Rigler, F. H.) 266–335 (Blackwell, Oxford, 1984).

    Google Scholar 

  41. Steel, R. G. D. & Torrie, J. H. Principles and Procedures of Statistics (McGraw-Hill, New York, 1960).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Downing, J. Spatial heterogeneity: evolved behaviour or mathematical artefact?. Nature 323, 255–257 (1986). https://doi.org/10.1038/323255a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323255a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing