Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Elimination of action potentials blocks the structural development of retinogeniculate synapses

Abstract

Although the influence of electrical activity on neural development has been studied extensively1,2, experiments have only recently focused on the role of activity in the development of the mammalian central nervous system (CNS)3–10. Using tetrodotoxin (TTX) to abolish sodium-mediated action potentials11,12, studies on the visual system show that impulse activity is essential both for the normal development of neuronal size5 and responsivity in the lateral geniculate nucleus (LGN)4,10, and for the eye-specific segregation of geniculo-cortical axons3,7. There have been no anatomical studies to investigate the influence of action potentials on CNS synaptic development. We report here the first direct evidence that elimination of action potentials in the mammalian CNS blocks the growth of developing axon terminals and the formation of normal adult synaptic patterns. Our results show that when TTX is used to eliminate retinal ganglion-cell action potentials in the cat from birth to 8 weeks, the connections made by ganglion cell axons with LGN neurones, retinogeniculate synapses, remain almost identical morphologically to those in the newborn kitten.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Harris, W. A. A. Rev. Physiol. 43, 689–710 (1981).

    Article  CAS  Google Scholar 

  2. Fawcett, J. W. & O'Leary, D. D. M. Trends neurol. Sci. 8, 201–206 (1985).

    Article  Google Scholar 

  3. Stryker, M. P. Soc. Neurosci. Abstr. 7, 842 (1981).

    Google Scholar 

  4. Archer, S. M., Dubin, M. W. & Stark, L. A. Science 217, 743–745 (1982).

    Article  CAS  ADS  Google Scholar 

  5. Kupperman, B. D. & Kasamatsu, T. Nature 306, 465–468 (1983).

    Article  ADS  Google Scholar 

  6. Fawcett, J. W., O'Leary, D. D. M. & Cowan, W. M. Proc. natl. Acad. Sci. U.S.A. 81, 5589–5593 (1984).

    Article  CAS  ADS  Google Scholar 

  7. Stryker, M. P. & Strickland, S. L. Invest. Ophthal. Vis. Sci. Suppl 25, 278 (1984).

    Google Scholar 

  8. Riccio, R. V. & Matthews, M. A. Devl. Brain Res. 19, 173–182 (1985).

    Article  CAS  Google Scholar 

  9. Riccio, R. V. & Matthews, M. A. Devl. Brain Res. 20, 55–68 (1985).

    Article  CAS  Google Scholar 

  10. Dubin, M. W., Stark, L. A. & Archer, S. M. J. Neurosci. 6, 1021–1036 (1986).

    Article  CAS  Google Scholar 

  11. Narahashi, T., Moore, J. W. & Scott, W. R. J. gen. Physiol. 47, 965–974 (1964).

    Article  CAS  Google Scholar 

  12. Catterall, W. A. A. Rev. Pharmac. Toxicol. 20, 15–43 (1980).

    Article  CAS  Google Scholar 

  13. Guillery, R. W. Z. Zellforsch. mikrosk. Anat. 96, 1–38 (1969).

    Article  CAS  Google Scholar 

  14. Kalil, R. E. & Scott, G. Soc. Neurosci. Abstr. 5, 791 (1979).

    Google Scholar 

  15. Mason, C. A. Neuroscience 7, 541 (1982).

    Article  CAS  Google Scholar 

  16. Sterling, P. & Davis, T. L. J. comp. Neural. 192, 737–749 (1980).

    Article  CAS  Google Scholar 

  17. Fitzpatrick, D., Penny, G. R. & Schmechel, D. E. J. Neurosci. 4, 1809–1829 (1984).

    Article  CAS  Google Scholar 

  18. Hamos, J. E., VanHorn, S. C., Raczkowski, D., Ulrich, D.J. & Sherman, S.M. Nature 317, 618–621 (1985).

    Article  CAS  ADS  Google Scholar 

  19. Rapisardi, S. C. & Miles, T. P. J. comp. Neurol. 223, 515–534 (1984).

    Article  CAS  Google Scholar 

  20. Grafstein, B. & Edwards, D. L. in Axoplasmic Transport in Physiology and Pathology (eds Weiss, D. G. & Gorio, A.) 21–26 (Springer, New York, 1982).

    Book  Google Scholar 

  21. Riccio, R. V. & Matthews, M. A., Neurosci. Abstr. 9, 150 (1983).

    Google Scholar 

  22. Edwards, D. L. & Grafstein, B. Brain Res. 299, (1984).

  23. Matthews, M. A., Narayanan, C. H., Narayanan, Y. & Siegenthaler-Matthews, D. J. Neuroscience 7, 405–422 (1982).

    Article  CAS  Google Scholar 

  24. Guillery, R. W. J. comp. Neurol. 146, 407–420 (1972).

    Article  CAS  Google Scholar 

  25. Kalil, R. E. Anat. Rec. 172, 339–340 (1972).

    Google Scholar 

  26. Hickey, T. L. J. comp. Neurol. 161, 359–382 (1975).

    Article  CAS  Google Scholar 

  27. Zigmond, R. E. & Bowers, C. W. A. Rev. Physiol. 43, 673–687 (1981).

    Article  CAS  Google Scholar 

  28. Kalil, R. E., Dubin, M. W., Scott, G. L. & Stark, L. A. Invest. Ophthal Vis. Sci. Suppl. 26, 287 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalil, R., Dubin, M., Scott, G. et al. Elimination of action potentials blocks the structural development of retinogeniculate synapses. Nature 323, 156–158 (1986). https://doi.org/10.1038/323156a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323156a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing