Letter | Published:

Recombinant human TNF induces production of granulocyte–monocyte colony-stimulating factor


Tumour necrosis factor (TNF) is synthesized by macrophages exposed to endotoxin1. It produces haemorrhagic necrosis of a variety of tumours in mice and is cytostatic or cytocidal against various transformed cell lines in vitro, but viability of normal human or rodent cells is unaffected2–4. The role of TNF is unlikely to be restricted to the rejection of tumours. Colony-stimulating factors (CSFs) are required for survival, proliferation and differentiation of haematopoietic progenitor cells. The haematopoietic growth factor known as granulocyte-monocyte colony-stimulating factor (GM-CSF) has the ability to stimulate proliferation and differentiation of normal granulocyte-monocyte and eosinophil stem cells and enhance the proliferation of pluripotent, megakaryocyte and erythroid stem cells5. In addition, GM-CSF stimulates a variety of functional activities in mature granulocytes and macrophages, for example inhibition of migration, phagocytosis of microbes, oxidative metabolism, and antibody-dependent cytotoxic killing of tumour cells5–7. We show here that TNF markedly stimulates production of GM-CSF messenger RNA and protein in normal human lung fibroblasts and vascular endothelial cells, and in cells of several malignant tissues.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Carswell, E. A. et al. Proc. natn. Acad. Sci. U.S.A. 72, 3666–3670 (1975).

  2. 2

    Helson, L., Green, J., Carswell, E. & Old, L. Nature 258, 730–732 (1975).

  3. 3

    Matthews, N., Watkins, J. F. Br. J. Cancer 38, 302–309 (1978).

  4. 4

    Aggarwal, B. et al. science 260, 2345–2354 (1985).

  5. 5

    Metcalf, D. Science 229, 16–22 (1984).

  6. 6

    Gasson, J. et al. science 226, 1339–1342 (1984).

  7. 7

    Weisbart, R., Golde, D., Clark, S., Wong, G. & Gasson, J. Nature 314, 361–362 (1985).

  8. 8

    Koeffler, H.P. & Golde, D. Science 200, 1153–1155 (1978).

  9. 9

    Leary, A., Ogawa, M., Strauss, L. & Civin, C. J. clin. Invest. 74, 2193–2197 (1984).

  10. 10

    Wong, G. G. et al. science 228, 810–814 (1985).

  11. 11

    Beutler, B., Mahoney, J., Le Trang, N., Pekala, P. & Cerami, A. J. exp. Med. 161, 984–995 (1985).

  12. 12

    Collins, T., La Pierre, L. A., Fiers, W., Strominger, J. & Pober, J. S. Proc. natn. Acad. Sci. U.S.A. 83, 446–450 (1986).

  13. 13

    Gamble, J. R., Harlan, J. M., Klebanoff, S. J., Vadas, M. A. Proc. natn. Acad. Sci. U.S.A. 82, 8667–8681 (1985).

  14. 14

    Shalaby, M. R. et al. J. Immun. 135, 2069–2073 (1985).

  15. 15

    Sugarman, B. et al. Science 230, 943–945 (1985).

  16. 16

    Vilcek, J. et al. J. exp. Med. 163, 632–643 (1986).

  17. 17

    Maniatis, T., Fritsch, E. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

  18. 18

    Souza, L. et al. Science 232, 61 (1986).

  19. 19

    Zucali, J. R. et al. J. clin. Invest. 77, 1857 (1986).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.