Letter | Published:

Mobilization of cryogenic ice in outer Solar System satellites

Abstract

Voyager images1 of the uranian satellites show a diversity of geological features, including clear evidence for the ‘softening’ and mobilization of ice on Miranda and Ariel. Some of these features are similar to those seen on jovian and saturnian satellites, where the mobile material is believed to be water or a water–ammonia mixture. However, the extremely low temperatures and probable unavailability of large energy sources within the uranian satellites lead us to consider flow mechanisms that operate at very low temperature (T ≤ 100 K). We propose here a form of pressure-solution creep, in which very fine-grained water ice or clathrate hydrate is mobilized by a small amount of intergranular cryogenic fluid (CH4, CO or N2). Viscosities as low as 1012 P are possible for a limited time, sufficient to allow flooding of rift valleys and perhaps even substantial lateral flows (glaciers).

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Smith, B. A. et al. Science 233, 43–64 (1986).

  2. 2

    Stevenson, D. J. in Uranus and Neptune (ed. Bergstralh, J. T.) 405–423 (NASA Conf. Publ. No. 2330, 1984).

  3. 3

    Lunine, J. I. & Stevenson, D. J. Astrophys. J. Suppl. Ser. 58, 493–531 (1985).

  4. 4

    Fyfe, W. S., Turner, F. J. & Verhoogen, J. Mem. geol. Soc. Am. No. 73 (1958).

  5. 5

    Rutter, E. H. Phil. Trans. R. Soc. A283, 203–219 (1976).

  6. 6

    Durney, D. W. Phil. Trans. R. Soc. A283, 229–240 (1976).

  7. 7

    Pharr, G. M. & Ashby, M. F. Acta metall. 31, 129–138 (1983).

  8. 8

    Turcotte, D. L. & Schubert, G. Geodynamics, 335 (Wiley, New York, 1982).

  9. 9

    Rebiai, R., Rest, A. J. & Scurlock, R. G. Nature 305, 412–413 (1983).

  10. 10

    Siever, R. J. Geol. 70, 127–150 (1962).

  11. 11

    Eisenberg, D. & Kauzmann, W. The Structure and Properties of Water, 99–175 (Oxford University Press, 1969).

  12. 12

    Vegard, L. Z. Phys. 61, 185–190 (1930).

  13. 13

    Rudenko, N. W. & Schubikow, L. W. Phys. Z. SowjUn. 6, 470 (1934).

  14. 14

    Longuet-Higgins, H. C. & Pople, J. A. J. chem. Phys. 25, 884 (1956).

  15. 15

    Draine, B. T. in Protostars and Planets II (eds Black, D. C. & Matthews, M. A.) 621–640 (University of Arizona Press, Tucson, 1985).

  16. 16

    Ney, E. P. in Comets (ed. Wilkening, L. L.) 323–340 (University of Arizona Press, Tucson, 1982).

  17. 17

    Brownlee, D. E. in Protostars and Planets (ed. Gehrels, T.) 134–150 (University of Arizona Press, Tucson, 1978).

  18. 18

    Van Kasteren, P. H. G. Bull. Inst. int. Froid. Annexe 4, 81–87 (1973).

  19. 19

    Weyl, W. A. in Rheology: Theory and Applications Vol. 3 (ed. Eirich, F. R.) 299–340 (Academic, New York, 1960).

  20. 20

    Hobbs, P. V. Ice Physics Ch. 4 (Clarendon, Oxford, 1974).

  21. 21

    Stevenson, D. J. Nature 298, 142–144 (1982).

  22. 22

    McKinnon, W. B. & Meadows, M. Bull. Am astr. Soc. 16, 686 (1984).

  23. 23

    Friedson, A. J. & Stevenson, D. J. Icarus 56, 1–14 (1983).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.