Abstract
The voltage-gated sodium channel is a transmembrane protein essential for the generation of action potentials in excitable cells1. It has been reported that sodium channels purified from the electric organ of the electric eel, Electrophorus electricus2,3, and from chick cardiac muscle4 consist of a single polypeptide of relative molecular mass (Mr)∼ 260,000, whereas those purified from rat brain5 and from rat6,7 and rabbit skeletal muscle7 contain, in addition to the large polypeptide, one or two smaller polypeptides of Mr33,000–43,000. The primary structures of the Electrophorus sodium channel8 and two distinct sodium channel large polypeptides9 (designated as sodium channels I and II) from rat brain have been elucidated by cloning and sequencing the complementary DNAs. The purified sodium channel preparations from Electrophorus electroplax10 and from mammalian muscle11,12 and brain13–15, when reconstituted into lipid vesicles or planar lipid bilayers, exhibit some functional activities. The successful reconstitution with the Electrophoruspreparation would imply that the large polypeptide alone is sufficient to form functional sodium channels. However, studies with the rat brain preparation suggest that the smaller polypeptide of Mr36,000 is also required for the integrity of the saxitoxin (STX) or tetrodotoxin (TTX) binding site of the sodium channel16. Here we report that the messenger RNAs generated by transcription of the cloned cDNAs encoding the rat brain sodium channel large polypeptides, when injected into Xenopus oocytes, can direct the formation of functional sodium channels.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Navβ4 Regulates Fast Resurgent Sodium Currents and Excitability in Sensory Neurons
Molecular Pain Open Access 25 September 2015
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Hille, B. Ionic Channels of Excitable Membranes (Sinauer Associates Inc., Sunderland, Massachusetts, 1984).
Agnew, W. S., Levinson, S. R., Brabson, J. S. & Raftery, M. A. Proc. natn. Acad. Sci. U.S.A. 75, 2606–2610 (1978).
Miller, J. A., Agnew, W. S. & Levinson, S. R. Biochemistry 22, 462–470 (1983).
Lombet, A. & Lazdunski, M. Eur. J. Biochem. 141, 651–660 (1984).
Messner, D. J. & Catterall, W. A. J. biol. Chem. 260, 10597–10604 (1985).
Barchi, R. L. J. Neurochem. 40, 1377–1385 (1983).
Barchi, R. L., Tanaka, J. C. & Furman, R. E. J. cell. Biochem. 26, 135–146 (1984).
Noda, M. et al. Nature 312, 121–127 (1984).
Noda, M. et al. Nature 320, 188–192 (1986).
Rosenberg, R. L., Tomiko, S. A. & Agnew, W. S. Proc. natn. Acad. Sci. U.S.A. 81, 1239–1243 (1984).
Tanaka, J. C., Eccleston, J. F. & Barchi, R. L. J. biol. Chem. 258, 7519–7526 (1983).
Kraner, S. D., Tanaka, J. C. & Barchi, R. L. J. biol. Chem. 260, 6341–6347 (1985).
Hanke, W., Boheim, G., Barhanin, J., Pauron, D. & Lazdunski, M. EMBO J. 3, 509–515 (1984).
Hartshorne, R. P., Keller, B. U., Talvenheimo, J. A., Catterall, W. A. & Montal, M. Proc. natn. Acad. Sci. U.S.A. 82, 240–244 (1985).
Feller, D. J., Talvenheimo, J. A. & Catterall, W. A. J. biol. Chem. 260, 11542–11547 (1985).
Messner, D. J. & Catterall, W. A. J. biol. Chem. 261, 211–215 (1986).
Green, M. R., Maniatis, T. & Melton, D. A. Cell 32, 681–694 (1983).
Melton, D. A. et al. Nucleic Acids Res. 12, 7035–7056 (1984).
Gundersen, C. B., Miledi, R. & Parker, I. Proc. R. Soc. B220, 131–140 (1983).
Gundersen, C. B., Miledi, R. & Parker, I. Nature 308, 421–424 (1984).
Baud, C., Kado, R. T. & Marcher, K. Proc. natn. Acad. Sci. U.S.A. 79, 3188–3192 (1982).
Baud, C. & Kado, R. T. J. Physiol., Lond. 356, 275–289 (1984).
Kusano, K., Miledi, R. & Stinnakre, J. J. Physiol., Lond. 328, 143–170 (1982).
Barish, M. E. J. Physiol., Lond. 342, 309–325 (1983).
Leonard, J., Snutch, T., Lubbert, H., Davidson, N. & Lester, H. A. Biophys. J. 49, 386a (1986).
Methfessel, C. et al. Pflügers Arch. ges. Physiol. (in the press).
Hodgkin, A. L. & Huxley, A. F. J. Physiol., Lond. 117, 500–544 (1952).
Sumikawa, K., Parker, I. & Miledi, R. Proc. natn. Acad. Sci. U.S.A. 81, 7994–7998 (1984).
Hirono, C. et al. Brain Res. 359, 57–64 (1985).
Yanisch-Perron, C., Vieira, J. & Messing, J. Gene 33, 103–119 (1985).
Messing, J. Meth. Enzym. 101, 20–78 (1983).
Konarska, M. M., Padgett, R. A. & Sharp, P. A. Cell 38, 731–736 (1984).
McMaster, G. K. & Carmichael, G. G. Proc. natn. Acad. Sci. U.S.A. 74, 4835–4838 (1977).
Miledi, R. & Sumikawa, K. Biomed. Res. 3, 390–399 (1982).
Aviv, H. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 69, 1408–1412 (1972).
Houghton, M. et al. Nucleic Acids Res. 8, 1913–1931 (1980).
Gurdon, J. B. The Control of Gene Expression in Animal Development (Clarendon, Oxford, 1974).
Sakmann, B. et al. Nature 318, 538–543 (1985).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Noda, M., Ikeda, T., Suzuki, H. et al. Expression of functional sodium channels from cloned cDNA. Nature 322, 826–828 (1986). https://doi.org/10.1038/322826a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/322826a0
This article is cited by
-
The chemical basis for electrical signaling
Nature Chemical Biology (2017)
-
Forty Years of Sodium Channels: Structure, Function, Pharmacology, and Epilepsy
Neurochemical Research (2017)
-
Navβ4 Regulates Fast Resurgent Sodium Currents and Excitability in Sensory Neurons
Molecular Pain (2015)
-
The voltage-gated sodium channel TPC1 confers endolysosomal excitability
Nature Chemical Biology (2014)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.