Abstract
Chloroplasts contain their own autonomously replicating DNA genome. The majority of proteins present in the chloroplasts are encoded by nuclear DNA, but the rest are encoded by chloroplast DNA and synthesized by the chloroplast transcription–translation machinery1–4. Although the nucleotide sequences of many chloroplast genes from various plant species have been determined, the entire gene organization of the chloroplast genome has not yet been elucidated for any species of plants. To improve our understanding of the chloroplast gene system, we have determined the complete sequence of the chloroplast DNA from a liverwort, Marchantia polymorpha, and deduced the gene organization. As reported here the liverwort chloroplast DNA contains 121,024 base pairs (bp), consisting of a set of large inverted repeats (IRA and IRB, each of 10,058 bp) separated by a small single-copy region (SSC, 19,813 bp) and a large single-copy region (LSC, 81,095 bp). We detected 128 possible genes throughout the liverwort chloroplast genome, including coding sequences for four kinds of ribosomal RNAs, 32 species of transfer RNAs and 55 identified open reading frames (ORFs) for proteins, which are separated by short A+T-rich spacers (Fig. 1). Twenty genes (8 encoding tRNAs, 12 encoding proteins) contain introns in their coding sequences. These introns can be classified as belonging to either group I or group II, as described for mitochondria5. Interestingly, seven of the identified ORFs show high homology to unidentified reading frames (URFs) found in human mitochondria6,7.
Your institute does not have access to this article
Relevant articles
Open Access articles citing this article.
-
Functional basis of electron transport within photosynthetic complex I
Nature Communications Open Access 10 September 2021
-
Ultra-deep sequencing reveals dramatic alteration of organellar genomes in Physcomitrella patens due to biased asymmetric recombination
Communications Biology Open Access 27 May 2021
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
References
Bogorad, L. Genetic Engineering Vol. 1 (eds. Setlow, K. & Hollaender, A.) 181–203 (Plenum, New York, 1979).
Whitfeld, P. R. & Bottomley, W. A. Rev. Pl. Physiol. 34, 279–310 (1983).
Palmer, J. D. A. Rev. Genet. 19, 325–354 (1985).
Herrnann, R. G. et al. in Structure and Function of Plant Genomes (eds Ciferri, O. & Dure, L.) 143–153 (Plenum, New York, 1985).
Michel, F. & Dujon, B. EMBO J. 2, 33–38 (1983).
Anderson, S. et al. Nature 290, 457–465 (1981).
Chomyn, A. et al. Nature 314, 592–597 (1985).
Ohyama, K. et al. Molec. gen. Genet. 189, 1–9 (1983).
Yamano, Y., Ohyama, K. & Komano, T. Nucleic Acids Res. 12, 4621–4624 (1984).
Yamano, Y. et al. FEBS Lett. 185, 203–207 (1985).
Crick, F. H. C. Scient. Am. 245(4), 55–62 (1966).
Crick, F. H. C. J. molec. Biol. 19, 548–555 (1966).
Ellis, R. J. A. Rev. Pl. Physiol. 32, 111–137 (1981).
Wilbur, W. J. & Lipman, D. J. Proc. natn. Acad. Sci. U.S.A. 80, 726–730 (1983).
Dorne, A.-M., Lescure, A.-M. & Mache, R. Pl. molec. Biol. 3, 83–90 (1984).
Zurawski, G. & Zurawski, S. M. Nucleic Acids Res. 13, 4521–4526 (1985).
Cerretti, D. P. et al. Nucleic Acids Res. 11, 2599–2616 (1983).
Bedwell, D. et al. Nucleic Acids Res. 13, 3891–3903 (1985).
Umesono, K. et al. Nucleic Acids Res. 12, 9551–9565 (1984).
Fukuzawa, H. et al. FEBS Lett. 198, 11–15 (1986).
Yura, T. et al. Proc. natn. Acad. Sci. U.S.A. 81, 6803–6807 (1984).
Crouse, E. J., Schmitt, J. M. & Bohnert, H.-J. Pl. molec. Biol. Reptr. 3, 43–89 (1985).
Montandon, P. E. & Stutz, E. Nucleic Acids Res. 11, 5877–5892 (1983).
Shinozaki, K. et al. Molec. gen. Genet. 202, 1–5 (1986).
Bennoun, P. Proc. natn. Acad. Sci. U.S.A. 79, 4352–4356 (1982).
Yasunobu, K. T. & Tanaka, M. Meth. Enzym. 69, 228–238 (1980).
Hearst, J. E. et al. Cell 40, 219–220 (1985).
Widger, W. R. et al. Proc. natn. Acad. Sci. U.S.A. 81, 674–678 (1984).
Higgins, C. F. et al. EMBO J. 4, 1033–1040 (1985).
Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).
Sanger, F., Wicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).
Messing, J., Crea, R. & Seeburg, P. H. Nucleic Acids Res. 9, 309–321 (1981).
Yanisch-Perron, C., Vieira, J. & Messing, J. Gene 33, 103–119 (1985).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ohyama, K., Fukuzawa, H., Kohchi, T. et al. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322, 572–574 (1986). https://doi.org/10.1038/322572a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/322572a0
Further reading
-
A genome-wide analysis of the chloroplast NADH dehydrogenase-like genes in Zostera marina
Journal of Oceanology and Limnology (2022)
-
Short and long reads chloroplast genome assemblies and phylogenomics of Artemisia tangutica (Asteraceae)
Biologia (2022)
-
Functional basis of electron transport within photosynthetic complex I
Nature Communications (2021)
-
Ultra-deep sequencing reveals dramatic alteration of organellar genomes in Physcomitrella patens due to biased asymmetric recombination
Communications Biology (2021)
-
Structural characterization and comparative analysis of the chloroplast genome of Ginkgo biloba and other gymnosperms
Journal of Forestry Research (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.