Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ionic basis of membrane potential in outer hair cells of guinea pig cochlea

Abstract

Mammalian hearing involves features not found in other species, for example,the separation of sound frequencies depends on an active control of the cochlear mechanics1,2.The force-generating component in the cochlea is likely to be the outer hair cell(OHC), one of the two types of sensory cell through which current is gated by mechano-electrical transducer channels sited on the apical surface3.Outer hair cells isolated in vitro have been shown to be motile4,5 and capable of generating forces at acoustic frequencies6. The OHC membrane is not, however, electrically tuned, as found in lower vertebrates7–9. Here we describe how the OHC resting potential is determined by a Ca2+-activated K+ conductance10,11 at the base of the cell. Two channel types with unitary sizes of 240 and 45 pS underlie this Ca2+-activated K+ conductance and we suggest that their activity is determined by a Ca2+ influx through the apical transducer channel, as demonstrated in other hair cells12. This coupled system simultaneously explains the large OHC resting potentials observed in vivo13,14 and indicates how the current gated by the transducer may be maximized to generate the forces required in cochlear micromechanics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Brown, M. C. & Nuttall, A. L. J. Physiol., Lond. 354, 625–646 (1984).

    CAS  Article  Google Scholar 

  2. 2

    Davis, H. Hearing Res. 9, 79–90 (1983).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Pickles, J. O. Prog. Neurobiol. 24, 1–42 (1985).

    CAS  Article  Google Scholar 

  4. 4

    Ashmore, J. F. J. Physiol., Lond. 364, 4P (1985).

    Google Scholar 

  5. 5

    Brownell, W. E., Bader, C. R., Bertrand, D. & de Ribaupierre, Y. Science 227, 194–196 (1985).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Ashmore, J. F. & Brownell, W. E. J. Physiol., Lond. (in the press).

  7. 7

    Lewis, R. S. & Hudspeth, A. J. Nature 304, 538–541 (1983).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Ashmore, J. F. & Pitchford, S. J. Physiol., Lond. 364, 39P (1985).

    Google Scholar 

  9. 9

    Crawford, A. C. & Fettiplace, R. J. Physiol., Lond. 312, 377–412 (1981).

    CAS  Article  Google Scholar 

  10. 10

    Meech, R. W. Comp. Biochem. Physiol. 42A, 493–499 (1972).

    Article  Google Scholar 

  11. 11

    Meech, R. W. & Standen, N. B. J. Physiol., Lond. 249, 211–239 (1975).

    CAS  Article  Google Scholar 

  12. 12

    Ohmori, H. J. Physiol., Lond. 359, 189–218 (1985).

    CAS  Article  Google Scholar 

  13. 13

    Cody, A. R. & Russell, I. J. Nature 315, 662–665 (1985).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Dallos, P., Santos-Sacchi, J. & Flock, A. Science 218, 582–584 (1982).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers. Arch. ges. Physiol. 391, 85–100 (1981).

    CAS  Article  Google Scholar 

  16. 16

    Russell, I. J. Nobel Symp. 63, (in the press).

  17. 17

    Tsien, R. Y. Biochemistry 19, 2396–2404 (1980).

    CAS  Article  Google Scholar 

  18. 18

    Meech, R. W. A. Rev. Biophys. Bioengng 7, 1–18 (1978).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Hagiwara, S. & Byerly, L. A. Rev. Neurosci. 4, 69–125 (1981).

    CAS  Article  Google Scholar 

  20. 20

    Byerly, L., Meech, R. & Moody, W. Jr J. Physiol., Lond. 351, 199–216 (1984).

    CAS  Article  Google Scholar 

  21. 21

    Thomas, R. C. & Meech, R. W. Nature 299, 826–828 (1982).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Sigworth, F. J. & Neher, E. Nature 287, 447–449 (1980).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Horn, R. & Patlak, J. Proc. natn. Acad. Sci. U.S.A. 77, 6930–6934 (1980).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Barrett, J. N., Magleby, K. L. & Pallotta, B. S. J. Physiol., Lond. 331, 211–230 (1982).

    CAS  Article  Google Scholar 

  25. 25

    Cook, D. L., Ikeuchi, M. & Fujimoto, W. Y. Nature 311, 269–271 (1984).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Findlay, I. J. Physiol., Lond. 350, 179–195 (1984).

    CAS  Article  Google Scholar 

  27. 27

    Inoue, R., Kitamura, K. & Kuriyama, H. Pflügers Arch. ges. Physiol. 405, 173–179 (1985).

    CAS  Article  Google Scholar 

  28. 28

    Marty, A. Nature 291, 497–500 (1981).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Maruyama, Y., Petersen, O. H., Flanagan, P. & Pearson, G. T. Nature 305, 228–232 (1983).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Wong, B. S., Lecar, H. & Adler, M. Biophys. J. 39, 313–317 (1982).

    ADS  CAS  Article  Google Scholar 

  31. 31

    Yellen, G. J. gen. Physiol. 84, 157–186 (1984).

    CAS  Article  Google Scholar 

  32. 32

    Grygorczyk, R., Schwarz, W. & Passow, H. Biophys. J. 45, 693–698 (1984).

    CAS  Article  Google Scholar 

  33. 33

    Marty, A. Pflügers Arch. ges. Physiol. 396, 179–181 (1983).

    CAS  Article  Google Scholar 

  34. 34

    Singer, J. J. & Walsh, J. V. Jr Biophys. J. 45, 68–70 (1984).

    ADS  CAS  Article  Google Scholar 

  35. 35

    Bosher, S. K. & Warren, R. L. Nature 273, 377–378 (1978).

    ADS  CAS  Article  Google Scholar 

  36. 36

    Bosher, S. K. Acta oto-lar. 90, 219–229 (1980).

    CAS  Article  Google Scholar 

  37. 37

    Konishi, T. & Salt, A. N. Expl Brain Res. 40, 457–463 (1980).

    CAS  Article  Google Scholar 

  38. 38

    Yellen, G. Nature 296, 357–359 (1982).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ashmore, J., Meech, R. Ionic basis of membrane potential in outer hair cells of guinea pig cochlea. Nature 322, 368–371 (1986). https://doi.org/10.1038/322368a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing