Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA

Abstract

A molecule of chlorophyll is synthesized from eight molecules of δ-aminolevulinate (DALA), the universal precursor of porphyrins. The light-regulated conversion of glutamate to δ-aminolevulinate in the stroma of greening plastids involves the reduction of glutamate to glutamate-1-semialdehyde and its subsequent transamination1–5. The components performing this conversion have been isolated from barley1,2 and Chlamydomonas5 and separated into three fractions by serial affinity chromatography on Blue Sepharose and haem–1,5 or chlorophyllin–Sepharose2. The complete reaction can be performed in vitro in a reconstituted assay by combining all three fractions. An RNA is the essential component of the chlorophyllin–Sepharose-bound fraction2,3. By nucleotide sequence analysis, we have now identified this RNA as a chloroplast glutamate acceptor RNA. Glutamate attached by an aminoacyl bond to the 3′-terminal adenosine of this RNA is a substrate for the enzyme(s) which perform the subsequent reactions. This reaction represents a novel role for transfer RNA: participation in the metabolic conversion of its cognate amino acid into another metabolite of low relative molecular mass which subsequently is not used in peptide bond synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wang, W.-Y., Gough, S. P. & Kannangara, C. G. Carlsberg Res. Commun. 46, 243–257 (1981).

    Article  CAS  Google Scholar 

  2. Kannangara, C. G., Gough, S. P., Oliver, R. P. & Rasmussen, S. K. Carlsberg Res. Commun. 49, 417–437 (1984).

    Article  CAS  Google Scholar 

  3. Huang, D.-D., Wang, W.-Y., Gough, S. P. & Kannangara, C. G. Science 225, 1482–1484 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Kannangara, C. G., Gough, S. P. & von Wettstein, D. in Development in Plant Biology Vol. 2 (eds Akoyonoglou, G. & Akoyonoglou, J. H.) 147–160 (Elsevier, Amsterdam, 1978).

    Google Scholar 

  5. Wang, W.-Y., Huang, D.-D., Stachon, D., Gough, S. P. & Kannangara, C. G. Pl. Physiol. 74, 569–575 (1984).

    Article  CAS  Google Scholar 

  6. Stanley, J. & Vassilenko, S. Nature 274, 87–89 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Donis-Keller, H., Maxam, A. M. & Gilbert, W. Nucleic Acids Res. 4, 2527–2537 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Krupp, G. & Gross, H. J. in The Modified Nucleosides in Transfer RNA II: A Laboratory Manual of Genetic Analysis, Identification and Sequence Determination (eds Agris, P. F. & Kopper, R. A.) 11–58 (Liss, New York, 1983).

    Google Scholar 

  9. Peattie, D. A. Proc. natn. Acad. Sci. U.S.A. 76, 1760–1764 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Domdey, H., Jank, P., Sänger, H. L. & Gross, H. J. Nucleic Acids Res. 5, 1221–1236 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Silberklang, M., Gillum, A. M. & RajBhandary, U. L. Meth. Enzym. 59, 58–109 (1979).

    Article  CAS  PubMed  Google Scholar 

  12. Ohashi, Z., Harada, F. & Nishimura, S. FEBS Lett. 20, 239–241 (1972).

    Article  CAS  PubMed  Google Scholar 

  13. Munninger, K. O. & Chang, S. H. Biochem. biophys. Res. Commun. 46, 1837–1842 (1972).

    Article  CAS  PubMed  Google Scholar 

  14. Nishimura, S. in tRNA: Structure, Properties and Recognition (eds Schimmel, P. R., Söll, D. & Abelson, J. N.) 551–552 (Cold Spring Harbor Laboratory, New York, 1979).

    Google Scholar 

  15. Saneyoshi, M. & Nishimura, S. Biochim. biophys. Acta 204, 389–399 (1979).

    Article  Google Scholar 

  16. Gupta, R., Randerath, E. & Randerath, K. Nucleic Acids Res. 3, 2915–2921 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Raba, M. et al. Eur. J. Biochem. 97, 305–318 (1979).

    Article  CAS  PubMed  Google Scholar 

  18. Sprinzl, M., Moll, J., Meissner, F. & Hartmann, T. Nucleic Acids Res. 13, r1–r49 (1985).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fox, G. E. et al. Science 209, 457–463 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Quigley, F. & Weil, J. H. Curr. Genet. 9, 495–503 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Ohme, M., Kamogashira, T., Shinozaki, K. & Sugiura, M. Nucleic Acids Res. 13, 1045–1056 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuntz, M., Weill, J. H. & Steinmetz, A. Nucleic Acids Res. 12, 5037–5047 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rasmussen, O. F., Stummann, B. M. & Henningsen, K. W. Nucleic Acids Res. 12, 9143–9153 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Holschuh, K., Bottomley, W. & Whitfield, P. R. Pl. molec. Biol. 3, 313–317 (1984).

    Article  CAS  Google Scholar 

  25. Hollingsworth, M. J. & Hallick, R. B. J. biol. Chem. 257, 12795–12799 (1982).

    CAS  PubMed  Google Scholar 

  26. Silberklang, M., Gillum, A. M. & RajBhandary, U. L. Nucleic Acids Res. 4, 4091–4108 (1978).

    Article  Google Scholar 

  27. Martin, R. P., Schneller, J. M., Stahl, A. J. C. & Dirheimer, G. Nucleic Acids Res. 4, 3497–3511 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Poulsen, C. Carlsberg Res. Commun. 48, 57–80 (1983).

    Article  CAS  Google Scholar 

  29. Nesbitt, J. A. & Lennartz, W. J. J. biol. Chem. 243, 3088–3095 (1968).

    CAS  PubMed  Google Scholar 

  30. Leibowitz, M. J. & Soffer, R. L. Biochem. biophys. Res. Commun. 36, 47–53 (1969).

    Article  CAS  PubMed  Google Scholar 

  31. Bumsted, R. M., Dahl, J. M., Söll, D. & Strominger, J. L. J. biol. Chem. 249, 4787–4796 (1974).

    Google Scholar 

  32. Ciechanover, A., Wolin, S., Steitz, J. A. & Lodish, H. F. Proc. natn. Acad. Sci. U.S.A. 82, 1341–1345 (1985).

    Article  ADS  CAS  Google Scholar 

  33. Wilcox, M. & Nirenberg, M. Proc. natn. Acad. Sci. U.S.A. 61, 229–236 (1968).

    Article  ADS  CAS  Google Scholar 

  34. Henner, D. J. & Hoch, J. A. Microbiol. Rev. 44, 57–82 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. McKie, J., Lucas, C. & Smith, A. Phytochemistry 20, 1547–1549 (1981).

    Article  CAS  Google Scholar 

  36. Weinstein, J. D. & Beale, S. I. Archs Biochem. Biophys. 239, 87–93 (1985).

    Article  CAS  Google Scholar 

  37. Bischoff, R. E., Graeser, E. & McLaughlin, L. J. Chromat. 257, 305–315 (1983).

    Article  CAS  Google Scholar 

  38. Beier, H., Barciszewska, M., Krupp, G., Mitnacht, R. & Gross, H. J. EMBO J. 3, 351–356 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning, a Laboratory Manual (Cold Spring Harbor Laboratories, New York, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schön, A., Krupp, G., Gough, S. et al. The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 322, 281–284 (1986). https://doi.org/10.1038/322281a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322281a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing