Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sequence organization and genomic complexity of primate θ1 globin gene, a novel α-globin-like gene

Abstract

The α-like and β-like globin genes have provided a paradigm for the study of molecular evolution and regulation of multigene families in eukaryotes. The human α-globin gene cluster, which is on chromosome 16 (ref. 1), consists of six genes arranged in the order2–5 5′-ζ(embryonic)-ψζ-ψα2-ψα1-α2(adult)-α1(adult)-3′. DNA sequencing data have demonstrated that ζ (ref. 6) and α2 (or α1, refs 7–9) are the embryonic and adult genes, respectively, while ψζ (ref. 6), ψα2 (ref. 5) ψα1 (ref. 10) are all inactive pseudogenes. Restriction mapping analysis has shown that the structure of this locus in several anthropoid primates is nearly identical to that of the human11,12. Recently, we have isolated the adult α-globin gene region from orang-utan, olive baboon and rhesus macaque by molecular cloning. We report here the complete nucleotide sequence of a gene located immediately downstream from the adult α1-globin gene of the orang-utan, along with its flanking DNA. We designate this gene as θ1, and show that it contains the essential sequence elements required for an expressive gene. The putative polypeptide is 141 amino acids long, identical to that of the α- or ζ-globin, but its predicted amino-acid sequence is nearly as different from the orang-utan α-globin (55 differences) as the human ζ-globin is from the human α-globin (59 differences), suggesting an ancient history for the θ1 -globin gene. Results of blot hybridization experiments using the cloned orang-utan θ1 gene sequence as probe demonstrate a similar α2-α1-θ1 linkage map existing in the human genome. Furthermore, multiple copies of sequences homologous to the θ1 gene are detected in both human and orang-utan. These results cast a new light on the primate α-globin gene family, and have intriguing implications for the existence of previously unreported, functional globin-like gene(s) in the primate genomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Deisseroth, A. et al. Cell 12, 205–218 (1977).

    Article  CAS  Google Scholar 

  2. Lauer, J., Shen, C.-K. J. & Maniatis, T. Cell 20, 119–130 (1980).

    Article  CAS  Google Scholar 

  3. Maniatis, T., Fritsch, E. F., Lauer, J. & Lawn, R. M. A. Rev. Genet. 14, 145–178 (1980).

    Article  CAS  Google Scholar 

  4. Collins, F. S. & Weissman, S. M. Prog. Nucleic Acid Res. molec. Biol. 31, 315–462 (1984).

    Article  CAS  Google Scholar 

  5. Hardison, R. C., Sawada, I., Cheng, J-F., Shen, C.-K. J. & Schmid, C. W. Nucleic Acids Res. 14, 1903–1911 (1986).

    Article  CAS  Google Scholar 

  6. Proudfoot, N., Gil, A. & Maniatis, T. Cell 31, 553–563 (1982).

    Article  CAS  Google Scholar 

  7. Liebhaber, S. A., Goossens, M. J. & Kan, Y. W. Proc. natn. Acad. Sci. U.S.A. 77, 7054–7058 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Liebhaber, S. A., Goossens, M. J. & Kan, Y. W. Nature 290, 26–29 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Michelson, A. M. & Orkin, S. H. J. biol. Chem. 258, 15245–15254 (1983).

    CAS  PubMed  Google Scholar 

  10. Proudfoot, N. J. & Maniatis, T. Cell 21, 537–544 (1980).

    Article  CAS  Google Scholar 

  11. Zimmer, E. A., Martin, S. L., Beverley, S. M., Kan, Y. W. & Wilson, A. C. Proc. natn. Acad. Sci. U.S.A. 77, 2158–2162 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Zimmer, E. A. thesis, Univ. California, Berkeley (1981).

  13. Higgs, D. R., Goodbourn, S. E. Y., Wainscoat, J. S., Clegg, J. B. & Weatherall, D. J. Nucleic Acids Res. 9, 4213–4224 (1981).

    Article  CAS  Google Scholar 

  14. Goodbourn, S. E. Y., Higgs, D. R., Clegg, J. B. & Weatherall, D. J. Proc. natn. Acad. Sci. U.S.A. 80, 5022–5026 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Hess, J. F., Fox, M., Schmid, C. W. & Shen, C.-K. J. Proc. natn. Acad. Sci. U.S.A. 80, 5970–5974 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Hess, J. F., Schmid, C. W. & Shen, C.-K. J. Science 226, 67–70 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Marks, J., Shaw, J.-P. & Shen, C.-K. J. Proc. natn. Acad. Sci. U.S.A. 83, 1413–1417 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Capon, D. J., Chen, E. Y., Levinson, A. D., Seeburg, P. H. & Goeddel, D. V. Nature 302, 33–37 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Boyer, S. H., Noyes, A. N., Boyer, M. L. & Marr, K. J. biol. Chem. 248, 992–1003 (1973).

    CAS  Google Scholar 

  20. Dickerson, R. & Geis, I. Hemoglobin: Structure, Function, Evolution and Pathology (Benjamin/Cummings, Menlo Park, 1983).

    Google Scholar 

  21. Fritsch, E. F., Lawn, R. M. & Maniatis, T. Cell 19, 959–972 (1980).

    Article  CAS  Google Scholar 

  22. Goossens, M. et al. Proc. natn. Acad. Sci. U.S.A. 77, 518–521 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Clegg, J. B., Goodbourn, S. E. Y. & Braend, M. Nucleic Acids Res. 12, 7847–7858 (1984).

    Article  CAS  Google Scholar 

  24. Cheng, J.-F., Raid, L. & Hardison, R. C. J. biol. Chem. 261, 839–848 (1986).

    CAS  PubMed  Google Scholar 

  25. Proudfoot, N. J., Rutherford, T. R. & Partington, G. A. EMBO J. 3, 1533–1540 (1984).

    Article  CAS  Google Scholar 

  26. Peschle, C. et al. Nature 313, 235–238 (1985).

    Article  ADS  CAS  Google Scholar 

  27. Perler, F. et al. Cell 20, 555–566 (1980).

    Article  CAS  Google Scholar 

  28. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

  29. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  30. Maniatis, T., Jeffrey, A. & Kleid, D. G. Proc. natn. Acad. Sci. U.S.A. 72, 1184–1188 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marks, J., Shaw, JP. & Shen, CK. Sequence organization and genomic complexity of primate θ1 globin gene, a novel α-globin-like gene. Nature 321, 785–788 (1986). https://doi.org/10.1038/321785a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321785a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing