Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

L1 family of repetitive DNA sequences in primates may be derived from a sequence encoding a reverse transcriptase-related protein

Abstract

Primate and rodent genomes contain a family of highly repetitive, long interspersed sequences, designated the L1 family or LINE-1 (refs 1–4). Characteristic features of the L1 family sequences such as an A-rich stretch at the 3′ end, a truncated 5′ end, the existence of significantly long open reading frames (ORFs)5–9 and the presence of L1 family transcripts in various types of cells, including pluripotential embryonic cells10–15, suggest that the L1 family is derived from a sequence encoding a protein(s) and dispersed in the genome through an RNA-mediated process. These features of the L1 family are believed to be due to reverse transcription beginning at the 3′ end of the L1 transcript and terminating prematurely and to the site duplication caused by the insertion of the complementary DNA (reviewed in refs 3, 4). It is likely that this type of transcript is converted to cDNA and inserted into the chromosome through a process similar to that of the formation of processed pseudogenes16. The above model, however, does not necessarily explain why the L1 family should produce the extraordinarily large number of copies (more than 104 per haploid genome17) seen during evolution. It seems likely that the progenitor of the L1 family itself carries (or carried) a function which promotes the active dispersion of the L1 family sequence. We reasoned that such a function, if present, must be conserved during evolution and may be shown by comparative analysis of L1 family sequences from evolutionary distant species. We show here that the L1 family sequence contains an ORF possessing significant sequence homology to several RNA-dependent DNA polymerases of viral and transposable element origins. This provides a plausible explanation for the preferential and active dispersion of the L1 family sequence during evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Adams, J. W., Kaufman, R. E., Kretschmer, P. J., Harrison, M. & Nienhuis, A. W. Nucleic Acids Res. 8, 6113–6128 (1980).

    Article  CAS  Google Scholar 

  2. Brown, S. D. M. & Dover, G. J. molec. Biol. 150, 441–466 (1981).

    Article  CAS  Google Scholar 

  3. Singer, M. F. Cell 28, 433–434 (1982).

    Article  CAS  Google Scholar 

  4. Singer, M. F. & Skowronski, J. Trends biochem. Sci. 10, 119–121 (1985).

    Article  CAS  Google Scholar 

  5. Manuelidis, L. Nucleic Acids Res. 10, 3211–3219 (1982).

    Article  CAS  Google Scholar 

  6. DiGiovanni, L., Haynes, S. R., Misra, R. & Jelinek, W. R. Proc. natn. Acad. Sci. U.S.A. 80, 6533–6537 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Martin, S. L. et al. Proc. natn. Acad. Sci. U.S.A. 81, 2308–2312 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Potter, S. S. Proc. natn. Acad. Sci. U.S.A. 81, 1012–1016 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Hattori, M., Hidaka, S. & Sakaki, Y. Nucleic Acids Res. 13, 7813–7827 (1985).

    Article  CAS  Google Scholar 

  10. Kole, L. B., Haynes, S. R. & Jelinek, W. R. J. molec. Biol. 165, 257–286 (1983).

    Article  CAS  Google Scholar 

  11. Shafit-Zagardo, B., Brown, F. L., Zarodny, P. & Maio, J. J. Nature 304, 277–280 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Lerman, M. I., Thayer, R. E. & Singer, M. F. Proc. natn. Acad. Sci. U.S.A. 80, 3966–3970 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Schmeckpeper, B. J., Scott, A. F. & Smith, K. D. J. biol. Chem. 259, 1218–1225 (1984).

    CAS  PubMed  Google Scholar 

  14. Sun, L., Paulson, K. E., Schmid, C. W., Kadyk, L. & Leinwand, L. Nucleic Acids Res. 12, 2669–2690 (1984).

    Article  CAS  Google Scholar 

  15. Skowronski, J. & Singber, M. F. Proc. natn. Acad. Sci. U.S.A. 82, 6050–6054 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Sharp, P. A. Nature 301, 471–472 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Grimald, G., Skowronski, J. & Singer, M. F. EMBO J. 3, 1753–1759 (1984).

    Article  Google Scholar 

  18. Voliva, C. F., Martin, S. L., Hutchison, C. A. III & Edgell, M. H. J. molec. Biol. 278, 795–813 (1984).

    Article  Google Scholar 

  19. Soares, M. B., Schon, E. & Efstratiadis, A. J. molec. Evol. 22, 117–133 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Michel, F. & Lang, B. F. Nature 316, 641–643 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Toh, H., Hayashida, H. & Miyata, T. Nature 305, 827–829 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Toh, H. et al. EMBO J. 4, 1267–1272 (1985).

    Article  CAS  Google Scholar 

  23. Hauber, J., N.-Hochstetter, P. & Feldmann, H. Nucleic Acids Res. 13, 2745–2758 (1985).

    Article  CAS  Google Scholar 

  24. Clare, J. & Farabaugh, P. Proc. natn. Acad. Sci. U.S.A. 82, 2829–2833 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Miyake, T., Migita, K. & Sakaki, Y. Nucleic Acids Res. 11, 6837–6846 (1983).

    Article  CAS  Google Scholar 

  26. Kunisada, T. & Yamagishi, H. Gene 31, 213–223 (1984).

    Article  CAS  Google Scholar 

  27. Shafit-Zagardo, B., Brown, F. L., Maio, J. J. & Adams, J. W. Gene 20, 397–407 (1982).

    Article  CAS  Google Scholar 

  28. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  29. Vieira, J. & Messing, J. Gene 19, 259–268 (1982).

    Article  CAS  Google Scholar 

  30. Yanisch-Perron, C., Vieira, J. & Messing, J. Gene 33, 103–119 (1985).

    Article  CAS  Google Scholar 

  31. Hattori, M. & Sakaki, Y. Analyt. Biochem. 152, 232–238 (1986).

    Article  CAS  Google Scholar 

  32. Wilbur, W. J. & Lipman, D. J. Proc. natn. Acad. Sci. U.S.A. 80, 726–730 (1983).

    Article  ADS  CAS  Google Scholar 

  33. Kuhara, S. et al. Nucleic Acids Res. 12, 89–99 (1984).

    Article  CAS  Google Scholar 

  34. Shinnick, T. M., Lerner, R. A. & Sutcliffe, J. G. Nature 293, 543–548 (1981).

    Article  ADS  CAS  Google Scholar 

  35. Chiu, I.-M. et al. Nature 317, 366–368 (1985).

    Article  ADS  CAS  Google Scholar 

  36. Sagata, N. et al. Proc. natn. Acad. Sci. U.S.A. 82, 677–681 (1985).

    Article  ADS  CAS  Google Scholar 

  37. Seiki, M., Hattori, S., Hirayama, Y. & Yoshida, M. Proc. natn. Acad. Sci. U.S.A. 80, 3618–3622 (1983).

    Article  ADS  CAS  Google Scholar 

  38. Schwartz, D., Tizard, R. & Gilbert, W. Cell 32, 853–869 (1983).

    Article  CAS  Google Scholar 

  39. Gardner, R. C. et al. Nucleic Acids Res. 9, 2871–2888 (1981).

    Article  CAS  Google Scholar 

  40. Saigo, K. et al. Nature 312, 659–661 (1984).

    Article  ADS  CAS  Google Scholar 

  41. Bonitz, S. G. et al. J. biol. Chem. 255, 11927–11941 (1980).

    CAS  PubMed  Google Scholar 

  42. Schwartz, R. M. & Dayhoff, M. O. in Atlas of Protein Sequence and Structure Vol. 5 (ed. Dayhoff, M. O.) 353–358 (National Biomedical Research Foundation, Washington, DC, 1972).

    Google Scholar 

  43. Barker, W.-C. & Dayhoff, M. O. in Atlas of Protein Sequence and Structure Vol. 5 (ed. Dayhoff, M. O.) 101–110 (National Biomedical Research Foundation, Washington, DC, 1972).

    Google Scholar 

  44. Loeb, D. D. et al. Molec. cell. Biol. 6, 168–182 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hattori, M., Kuhara, S., Takenaka, O. et al. L1 family of repetitive DNA sequences in primates may be derived from a sequence encoding a reverse transcriptase-related protein. Nature 321, 625–628 (1986). https://doi.org/10.1038/321625a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321625a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing