Abstract
Recent evidence suggests a role for eosinophil granule proteins in contact-dependent antibody-mediated cytotoxicity1–3. Cytolysis may involve a secretory phenomenon whereby granule proteins are released at the site of contact between eosinophil and target cells1–4. Several basic proteins have been isolated from eosinophil granules, including the major basic protein5–7, eosinophil cationic protein8,9, eosinophil protein-X10 and eosinophil peroxidase11. One of the major granule proteins of human eosinophils is the eosinophil cationic protein (ECP)3,8,9 which has been shown to damage schistosomula of Schistosoma mansoni at concentrations as low as 10−7 M (Ref. 12). Here, we describe the formation of functional channels by purified human ECP. The transmembrane pores formed by ECP are relatively voltage-insensitive and non-ion-selective, suggesting a role for channel formation by ECP in target cell damage mediated by eosinophils. Channel formation by granule proteins of immune effector cells13–20 may represent a general and effective mechanism of target cell killing.
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1
Ackerman, S. J. et al. J. Immun. 131, 2977–2982 (1983).
- 2
D. Dessein, A. J. & David, J. R. in Advances in Host Defense Mechanisms Vol. 1 (eds Gallin, J. I. & Fauci, A. S.) 243–268 (Raven, New York, 1982).
- 3
Venge, P., Dahl, R., Hallgren, R. & Olsson, I. in The Eosinophil in Health and Disease (eds Mahmoud, A. F. F. & Austen, K. F.) 131–142 (Grune & Stratton, Inc., New York, 1980).
- 4
Tai, P.C., Spry, C.J.F., Peterson, C.G.B., Venge, P. & Olsson, I. Nature 309, 182–184 (1984).
- 5
Gleich, G. J., Loegering, D. A. & Maldonado, J. E. J. exp. Med. 137, 1459–1471 (1973).
- 6
Gleich, G. J., Loegering, D. A., Kueppers, F., Bajaj, S. P. & Mann, K. G. J. exp. Med. 140, 313–332 (1974).
- 7
Gleich, G. J., Loegering, D. A., Mann, K. G. & Maldonado, J. E. J. clin. Invest. 57, 633–640 (1976).
- 8
Olsson, I. & Venge, P. Blood 44, 235–246 (1974).
- 9
Olsson, I., Venge, P., Spitznagel, J. K. & Lehrer, R. I. Lab. Invest. 36, 493–500 (1977).
- 10
Peterson, C. G. B. & Venge, P. Immunology 50, 19–26 (1983).
- 11
Carlson, M. G. Ch., Peterson, C. G. B. & Venge, P. J. Immun. 134, 1875–1879 (1985).
- 12
McLaren, D. J., McKean, J. R., Olsson, I., Venge, P. & Kay, A. B. Parasite Immun. 3, 359–373 (1981).
- 13
Millard, P. J., Henkart, M. P., Reynolds, C. W. & Henkart, P. A. J. Immun. 132, 3197–3204 (1984).
- 14
Podack, E. R. & Konigsberg, P. J. J. exp. Med. 160, 695–710 (1984).
- 15
Blumenthal, R., Millard, P. J., Henkart, M. P., Reynolds, C. W. & Henkart, P. A. Proc. natn. Acad. Sci. U.S.A. 81, 5551–5555 (1984).
- 16
Young, J. D.-E., Nathan, C. F., Podack, E. R., Palladino, M. A. & Cohn, Z. A. Proc. natn. Acad. Sci. U.S.A. 83, 150–154 (1986).
- 17
Masson, D. & Tschopp, J. J. biol. Chem. 260, 9069–9072 (1985).
- 18
Podack, E. R., Young, J. D.-E. & Cohn, Z. A. Proc. natn. Acad. Sci. U.S.A. 82, 8629–8633 (1985).
- 19
Young, J. D.-E., Hengartner, H., Podack, E. R. & Cohn, Z. A. Cell 44, 849–859 (1986).
- 20
Young, J. D.-E., Podack, E. R. & Cohn, Z. A. J. exp. Med. (in the press).
- 21
Young, J. D.-E., Blake, M., Mauro, A. & Cohn, Z. A. Proc. natn. Acad. Aci U.S.A. 80, 3831–3835 (1983).
- 22
Young, J. D.-E., Young, T. M., Lu, L. P., Unkeless, J. C. & Cohn, Z. A. J. exp. Med. 156, 1677–1690 (1982).
- 23
Montal, M. & Mueller, P. Proc. natn. Acad. Sci. U.S.A. 69, 3561–3566 (1972).
- 24
Young, J. D.-E., Unkeless, J. C., Young, T. M., Mauro, A. & Cohn, Z. A. Nature 306, 186–189 (1983).
- 25
Vadas, M. A., David, J. R., Butterworth, A., Pisani, N. T. & Siongok, T. A. J. Immun. 122, 1228–1236 (1979).
- 26
Borregard, N., Heiple, J. M., Simons, E. R. & Clark, R. A. J. Cell Biol. 97, 52–61 (1983).
- 27
Butterworth, A. E., Wassom, D. L., Gleich, G. J., Loegering, D. A. & David, J. R. J. Immun. 122, 221–229 (1979).
- 28
Wassom, D. L. & Gleich, G. J., J. Am. J. trop. Med. Hyg. 28, 860–863 (1979).
- 29
Gleich, G. J., Frigas, E., Loegering, D. A., Wassom, D. L. & Steinmuller, D. J. Immun. 123, 2925–2927 (1979).
- 30
Mental, M. J. Membrane Biol. 7, 245–266 (1972).
- 31
Bach, D. & Miller, I. R. J. Membrane Biol. 11, 237–254 (1973).
- 32
Tschopp, J., Muller-Eberhard, H. J. & Podack, E. R. Nature 298, 534–538 (1982).
- 33
Lynch, E. C., Rosenberg, I. M. & Gitler, C. EMBO J. 1, 801–804 (1982).
- 34
Sung, S.-S. J. et al. J. biol. Chem. 260, 13442–13449 (1985).
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Young, JE., Peterson, C., Venge, P. et al. Mechanism of membrane damage mediated by human eosinophil cationic protein. Nature 321, 613–616 (1986). https://doi.org/10.1038/321613a0
Received:
Accepted:
Issue Date:
Further reading
-
Mechanisms of toxicity mediated by neutrophil and eosinophil granule proteins
Allergology International (2021)
-
The Tumor Microenvironment: A Milieu Hindering and Obstructing Antitumor Immune Responses
Frontiers in Immunology (2020)
-
Eosinophil extracellular traps activate type 2 innate lymphoid cells through stimulating airway epithelium in severe asthma
Allergy (2020)
-
Eosinophillic Myocarditis Secondary to Metastatic Melanoma
Radiology: Cardiothoracic Imaging (2019)
-
Churg-Strauss Syndrome Presenting as Acute Necrotizing Eosinophilic Myocarditis: Concise Review of the Literature
Current Hypertension Reviews (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.