
©          Nature Publishing Group1986

_N_AT_U_R_E_V_O_L_. _32_1_S_JU_N_E_l_98_6 __________ NEWS AND VI EWS __________________ 5..c..:.61 

Physics 

Low-dimensional electron 
movement in a magnetic field 
from Paul Chaikin 

ELEL--rRONS in two dimensions in a perpen­
dicular magnetic field move in circular 
orbits. Quantization of these orbits is 
responsible for the quantum Hall effect as 
well as a wealth of oscillatory phenomena 
in metals. But electrons in one dimension 
in a magnetic field cannot form such or­
bits. The discovery of a series of magnetic 
field-induced phase transitions, oscilla­
tions and behaviour like the quantum Hall 
effect in Bechgaard salts, which act as 
quasi-one-dimensional organic conduc­
tors, has stimulated a flurry of recent ex­
perimental '-' and theoreticalO

-
o work and 

the discovery of a new form of instability 
in a two-dimensional system III II , as well as 
many unanswered questions. 

The crystal potential has two interesting 
effects on the states of a two-dimensional 
system in the field. If the potential is 
reasonably isotropic (as in a square 
lattice) the electron orbits are distorted 
but closed and periodic. The wave­
functions must satisfy both orbital 
quantization and crystalline symmetry, 
conditions which are usually incommen­
surate. The result is a complex hierarchical 
self-similar energy spectrum with gaps on 
all energy scales"u (Fig. 1). If the poten­
tial is highly anisotropic the motion of the 
electron may form a zigzag pattern which 
goes off in the easiest direction and never 
closes -- an open orbit (Fig. 2). 

The Bechgaard salts provide a unique 
system for the study of an interacting two­
dimensional electron gas in a magnetic 
field. They have the formula (TMTSF),X 
where X is PF", ClO" ReO, and so on l

-
5

, 

and are variously regarded as quasi-one­
or quasi-two-dimensional. They are better 
known as the first organic superconduc­
tors, but they can also have insulating 
spin-density wave (SDW) ground states 
depending on the pressure and on the 
anion X. The band structure has been cal­
culated and measured: the anisotropy in 
bandwidths in the highly conducting plane 
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is about 10: 1, whereas between the planes 
the bandwith is smaller by a factor of 30. 

It is well known that one-dimensional 
metals are unstable against a Peierl's 
distortion or SDW which leads to an 
insulating ground state. For the Bech­
gaard salts under consideration the band-
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Fig. 1 Energy spectrum of an electron in a 
square tight binding model in the presence of a 
magnetic field measured in flux quanta per unit 
cell (rjJ/rjJo). Dark regions, allowed states. 

T 
A 

1 

r-w--j 
Fig. 2 Electron motion in a magnetic field for an 
open orbit. wand A are proportional to the 

reciprocal of the magnetic field. 

width in the second most conducting 
direction is large, the systems are effec­
tively two-dimensional and they remain 
metallic to low temperatures. But the 
anisotropy is sufficient to make all the 
orbits open at the Fermi surface. In the 
presence of a magnetic field the electrons 
undergo the motion illustrated in Fig. 2. 
As the magnetic field increases the width 
w of the motion along the x direction and 
the period A along the y direction de­
crease. The effect is to make the electrons 
more one-dimensional and thus increas­
ingly susceptible to an SDW transition. 
Strictly speaking, the electron motion and 

the spectrum of the open-orbit electrons 
in a magnetic field is always one-dimen­
sional (limited excursions along x and 
infinite along y). Thus, two-dimensional 
open-orbit metals cannot exist at zero 
temperature. An infinitesimal magnetic 
field will drive them to an insulating 
Peierl's or SDW state"". 

The basic instability leading to the field­
induced transition is therefore well estab­
lished. There are several quasi-classical 
models that seek to explain the series of 
phase transitions which allow the wave­
vector of the SDW distortion to change 
both continuously and discontinuously to 
take advantage of the magnetic quanti­
zation of carrier pockets which result from 
the distortion' 0 

• 

In the usual treatment of the one­
dimensional instability a single length is 
considered -- the reciprocal of the Fermi 
momentum (PI) -- and this sets the wave­
length of the distortion at hl2 PI' In the 
field-induced phase there at least three 
lengths, hl2 PI' the magnetic length A 
(Fig. 2), which varies reciprocally with the 
magnetic field, and the lattice period. In 
general the lengths are incommensurate 
with one another. The distortion wave­
vector results from the competition of the 
interactions represented by these lengths. 
The spectrum resulting from incommen­
surate potentials is often quite complex, as 
illustrated for a particular case in Fig. 1. 

One might expect that the existence of 
the small gaps in the spectrum are incon­
sequential, as they are usually smeared 
out by finite temperature or scattering. 
The gaps have a profound effect on the 
Hall conductance, with the most dramatic 
effects involving large changes in magni­
tude and sign of the Hall conductance re­
sulting from the smallest gaps". More per­
fect crystals show an increasing number of 
field-induced transitions with abrupt sign 
changes in the Hall voltage", suggesting 
that in these salts an incommensurate 
spectrum is involved'. The existence of 
oscillations with a different magnetic fre­
quency at high fields also points to a com­
plex spectrum'. 

There are still basic questions left to be 
answered. The eventual state at high field 
should be insulating, but so far only semi­
metallic behaviour has been observed. 
And what of the quantum Hall effect? 
Hall measurements indicate steplike 
structure, but it is temperature dependent 
and has other dissimilarities"-i1. The 
interplane bandwidth is small enough to 
allow the two-dimensional instability to 
occur, but is the system two-dimensional 
enough for the quantum Hall effect? The 
roles of incommensurability and dimen­
sionality need further investigation. 0 
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