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at least partially non-autonomous in 
genetic mosaics. 

Although large-scale non-autonomy 
has not been observed in the analysis of 
segmentation phenotypes, the sample of 
loci tested so far is relatively smali l

'. Also, 
it is not clear whether the techniques 
presently available for marking cells in 
Drosophila are sufficiently accurate to 
exclude the limited non-autonomy needed 
to explain the discrepancy between the 
phenotypes and transcript distributions. 

Mathematics 

However, genetic mosaics ultimately 
provide the most direct technique for 
relating phenotypes to individual cell 
requirements, and the variety of mosaic 
techniques available in Drosophila should 
provide a better understanding of the 
relationship between the gene products 
and the patterning process. D 

Douglas Coulter and Eric Wieschaus are in the 
Department of Biology, Princeton University, 
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The class number problem 
from Ian Stewart 

SOME of the deepest mathematical theo
ries have been built from very humble raw 
materials, and a classic case is number 
theory, which studies properties of ordin
ary whole numbers 1,2,3, .... It has long 
been remarked that, although it is easy to 
observe patterns in the behaviour of 
whole numbers, it can be astonishingly 
hard to prove that these patterns are gen
erally valid. Number theorists have long 
been interested in the arithmetic of 
'imaginary quadratic fields', systems of 
numbers in the form x+yFD, where D 
is a whole number and x,y are rational. 

Any whole number can be factorized 
into primes, and there is an analogous 
concept for such fields. For whole num
bers, the prime factorization can be 
achieved in only one way. This is not 
always true for imaginary quadratic fields; 
and in his Disquisitiones Arithmeticce of 
1801, the fount of all modern number 
theory, Carl Friedrich Gauss in effect con
jectured that unique factorization holds 
precisely when D = 1,2,3,11,19,43,67 
and 163. This conjecture was proved more 
than a hundred years later by A. Baker 
(M athematika 13, 201; 1966) and inde
pendently by H.M. Stark (Michigan 
Math. 1. 14,1; 1967). But Gauss also stat
ed a more general conjecture, the class 
number problem, the solution of which by 
D.M. Goldfeld, B. Gross and D. Zagier 
has recently been described in a masterly 
survey by Goldfeld (Bull. Am. Math. Soc. 
13,23; 1985). 

The classic example of non-unique 
factorization occurs in the case D = 5. 
Here 6 = 2.3 = (1+,-5)(1-/-5) 
exhibits two distinct prime factorizations. 
(Ea~of the numbers 2, 3, 1 + J-=5 and 
1-,-5 is prime in this particular 
number field.) The extent to which fac
torization is not unique can be measured 
by a quantity called the class number, 
h: when h= I, factorization is unique, and 
for larger values of h it is not unique. In 
some sense the larger h becomes the less 
unique factorization is. For a given D it is 
relatively easy to calculate the class num-

ber (for example, if D = 5 then h = 2) but 
the list of values so obtained varies in a 
very irregular way with D. This makes it 
hard to solve the inverse problem: given a 
value for h, find which Ds have that class 
number. And this is what Gauss's con
jectures are about. The conjecture on 
unique factorization asks for a determina
tion of all D such that the class number is 
1, with the guess that they are precisely the 
9 values listed above. The general class 
number problem is to prove that for any 
given class number h, the list of D having 
that value for h is finite. 

Gauss actually phrased his conjectures 
in a slightly different setting, the theory of 
quadratic forms. This goes back to the 
time of Pierre de Fermat, who stated 
theorems of the following kind: "Every 
prime of the form 6n+ 1 can be written as 
x'+ 3y' for integers x and y." For example, 
31 is such a prime, and 31 = 12+3.32

• The 
connection with quadratic fields is that 
x'+3y' = (x+yF5)(x-YJ=1), a fac
torization in the field corresponding to 
D = 3. So theorems about quadratic 
fields carry implications for quadratic 
forms, and conversely. 

Gauss, and Joseph-Louis Lagrange be
fore him, realized that it is not necessary 
to study all possible quadratic forms, be
cause changes of variable can be used to 
turn one form into another. For example, 
if x and yare replaced by x+ 2y and x+ y, 
respectively, then the form x'+ 3y' be
comes 4x2+ lOxy+ 7/. Therefore, the 
numbers that can be represented in the 
formx2+ 3/ are precisely those that can be 
represented in the form 4x'+ lOxy+ 7y', 
even though at first sight these are dif
ferent questions. This led Gauss to the 
idea of 'equivalent' forms (transformable 
into each other by such changes of vari
able). He proved that there is only a finite 
number of distinct classes of equivalent 
forms, which is the class number of the 
associated quadratic field. 

H. Heilbronn and E.H. Linfoot (Q. Jl 
Math. 5, 293; 1934) showed that, apart 
from the nine known cases, at most one 

further field has class number 1. In 1952 
Kurt Heegner claimed a proof that no 
such tenth field exists, which would solve 
the class number 1 problem. But as Gold
feld remarks: "Heegner's paper contained 
some mistakes and was generally dis
counted at the time. He died before any
one really understood what he had done." 

Baker's proof uses new results from the 
theory of transcendental numbers (num
bers that do not satisfy any polynomial 
equation with rational coefficients), 
whereas Stark's proof is much closer in 
spirit to Heegner's attempt. Then M. 
Deuring (Inventiones Mathematicce 5, 
169; 1968) showed that the 'gap' in 
Heegner's attempted proof can be filled 
relatively painlessly. In 1971 Baker (Ann. 
Math. 94, 139) and Stark (Ann. Math. 94, 
153), again independently, solved the 
class number 2 problem, finding exactly 
18 values of D for which h = 2. 

Although these results represent enor
mous progress compared with what was 
previously known, it is clearly not feasible 
to tackle the general problem one class 
number at a time, because the process will 
never end. The interest of such partial 
answers is that they suggest new methods. 
Goldfeld (Asli!risque 41-42, 219; 1976) 
exploited a connection between the class 
number problem and an elliptic curve, a 
type of cubic equation. He showed that if 
just one elliptic curve can be found with a 
particular property, then the class number 
problem is solved. Unfortunately, no such 
elliptic curve was then known. But later, 
Gross and Zagier (C.r. hebd. Seanc. 
Acad. Sci., Paris 297,85; 1983) established 
the necessary property for the elliptic 
curve -139y' = x'+4x2-48x+80. By such 
roundabout methods was Gauss's con
jecture on the finiteness of the list of 
imaginary quadratic fields of given class 
number demonstrated. 

Soon afterwards, J. Oesterle (Seminaire 
Nicolas Bourbaki 631; 1984) obtained a 
specific estimate for the size of the largest 
D with given class number h, making is 
possible in principle to select values of h 
and find all possible Ds. As a result, the 
class number 3 problem (precisely which 
D gives h = 3?) has been solved, and many 
long-standing problems in number theory 
begin to appear tractable. For example, a 
solution of the class number 4 problem 
would answer a famous question: which 
integers can be expressed as a sum of three 
squares in exactly one way? The powerful 
and beautiful ideas laid bare by a 180-year 
assault on Gauss's conjecture strikingly 
attest to the quality of his insight into the 
deep properties of ordinary whole num
bers. But the sad story of Kurt Heegner 
shows that genius is still not always ap
preciated during its lifetime. D 

Ian Stewart is at the Mathematics Institute, 
University of Warwick, Coventry CV4 7AL, 
UK. 
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