Subjects

Abstract

The dust impact detection system (DIDSY) carried by the Giotto spacecraft has measured the density and mass spectrum (in the range 10−20–10−8 kg) of the dust near comet Halley. Profiles of the dust spectrum obtained at a distance of 291,000 km from the Halley nucleus show a complex mass spectrum, depleted in intermediate and small masses. Near closest approach (600 km from the nucleus), the dust activity increases dramatically and the spectrum is dominated by larger masses. The cumulative mass index (for a mass distribution function of the form mα) measured at an approach distance of 2,200 km from the nucleus is α = 0.66±0.05, corresponding to α = 0.83±0.05 at the nucleus. The Halley dust surface emission rate is found to be typically 1×10−6 kg m−2 s−1 for masses ≤10−8 kg, corresponding to a total dust production rate of 3.1×103 kg s−1. Particle fragmentation may have occurred in the dust cloud. Most of the mass striking Giotto resides in the few large particles penetrating the dust shield, and the integral mass is estimated to be 150 mg. Although the existence of previously unexpected small particles (of mass 10−20 kg) implies that previous infrared dust modelling1 must now be extended, these particles are found to contribute negligible areal cross-section compared with larger (≥10 µm diameter) particles. Momentum balances and energy considerations applied to an observed deceleration suggest that a large mass of the spacecraft was detached by an impact and ejected at low velocity.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Adv. Space Res. 4, 189–196 (1984).

  2. 2.

    et al. Eur. Space Ag. spec. Publ. 1077, 85–108 (1986).

  3. 3.

    , , , & Adv. Space Res. 4, 291–295 (1984).

  4. 4.

    Eur. Space Ag. spec. Publ. 153, 93–97 (1979).

  5. 5.

    et al. Adv. Space Res. 4, 297–301 (1984).

  6. 6.

    et al. Nature 321, 320–326 (1986).

  7. 7.

    & Astr. J. 89, 1408–1425; 1446–1459 (1984).

  8. 8.

    et al. Nature 321, 355–357 (1986).

  9. 9.

    ESA/ESOC OAD Technical Report on Giotto Spacecraft Status (1986).

  10. 10.

    et al. Nature 321, 330–334 (1986).

  11. 11.

    et al. Nature 321, 326–329 (1986).

  12. 12.

    , & Eng. System Int. Rep. EA/83 823 to ESA/ESTEC, Giotto Project (1984).

  13. 13.

    & in Cometary Exploration Vol. 2 (ed. Gombosi, T. I.) 81 (Central Research Institute for Physics, Budapest, 1983).

  14. 14.

    et al. The Comet Halley Dust and Gas Environment (Jet Propulsion Lab. Preprint No. D-2823, 1985).

  15. 15.

    et al. Nature 321, 341–344 (1986).

  16. 16.

    J. astr. Ass. S. Pacif. 97, 887 (1985).

Download references

Author information

Affiliations

  1. Unit for Space Sciences, University of Kent at Canterbury, Canterbury CT2 7NR, UK

    • J. A. M. McDonnell
    • , J. C. Zarnecki
    • , S. C. Chakaveh
    • , G. C. Evans
    • , S. T. Evans
    • , A. N. Littler
    • , R. E. Olearczyk
    • , G. S. Pankiewicz
    •  & T. J. Stevenson
  2. Institute for Environmental Studies, Baylor University, Waco, Texas 76703, USA

    • W. M. Alexander
  3. Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK

    • W. M. Burton
    • , J. G. Firth
    •  & R. F. Turner
  4. Physics Department, University of Lecce, 73100 Lecce, Italy

    • E. Bussoletti
  5. Science and Engineering Research Council, Swindon, SN2 1ET, UK

    • D. H. Clark
  6. ESA Space Science Department, ESTEC, Postbus 299, 2200 AG Noordwijk, The Netherlands

    • G. H. Schwehm
  7. Max-Planck-Institut für Kërnphysik, Postfach 103980, D-6900 Heidelberg, FRG

    • R. J. L. Grard
    •  & E. Grün
  8. Jet Propulsion Laboratory, Pasadena, California 91103, USA

    • M. S. Hanner
    •  & Z. Sekanina
  9. Department of Physics, University of Sheffield, Sheffield S3 7RH, UK

    • D. W. Hughes
  10. Technical University of Munich, D-8000 Munich 2, FRG

    • E. Igenbergs
  11. Messerschmitt-Bölkow-Blohm GmbH, Space Division, UR-RA 40, 8000 Munich 80, FRG

    • H. Kuczera
  12. Institute for Astronomy, Lund Observatory, S-22100 Lund, Sweden

    • B. A. Lindblad
  13. ONERA/CERT-DERTS, BP 41025, 31055 Toulouse, France

    • J.-C. Mandeville
  14. Physics Department, University of Bari, Bari, Italy

    • A. Minafra
  15. Department of Applied Mathematics, University College Cardiff, Cardiff CF1 1XL, UK

    • M. K. Wallis
  16. ESOC Orbit Altitude Division, 6100 Darmstadt, FRG

    • L. Massonne

Authors

  1. Search for J. A. M. McDonnell in:

  2. Search for W. M. Alexander in:

  3. Search for W. M. Burton in:

  4. Search for E. Bussoletti in:

  5. Search for D. H. Clark in:

  6. Search for R. J. L. Grard in:

  7. Search for E. Grün in:

  8. Search for M. S. Hanner in:

  9. Search for D. W. Hughes in:

  10. Search for E. Igenbergs in:

  11. Search for H. Kuczera in:

  12. Search for B. A. Lindblad in:

  13. Search for J.-C. Mandeville in:

  14. Search for A. Minafra in:

  15. Search for G. H. Schwehm in:

  16. Search for Z. Sekanina in:

  17. Search for M. K. Wallis in:

  18. Search for J. C. Zarnecki in:

  19. Search for S. C. Chakaveh in:

  20. Search for G. C. Evans in:

  21. Search for S. T. Evans in:

  22. Search for J. G. Firth in:

  23. Search for A. N. Littler in:

  24. Search for L. Massonne in:

  25. Search for R. E. Olearczyk in:

  26. Search for G. S. Pankiewicz in:

  27. Search for T. J. Stevenson in:

  28. Search for R. F. Turner in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/321338a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.