Letter | Published:

Peptide chemotaxis in E. coli involves the Tap signal transducer and the dipeptide permease

Nature volume 321, pages 253256 (15 May 1986) | Download Citation

Subjects

Abstract

Bacterial chemotaxis provides a simple model system for the more complex sensory responses of multicellular eukaryotic organisms1. In Escherichia coli, methylation and demethylation of four related membrane proteins, the methyl-accepting chemotaxis proteins (or MCPs), is central to chemotactic sensing and signal transduction2. Three of these proteins, Tar, Tsr and Trg, have been assigned specific roles in chemotaxis. However, the role of the fourth MCP, Tap, has remained obscure3. We demonstrate here that Tap functions as a conventional signal transducer, enabling the cell to respond chemotactically to dipeptides. This provides the first evidence of specific bacterial chemotaxis towards peptides. Peptide taxis requires the function of a periplasmic component of the dipeptide permease. This protein represents the first example of a periplasmic chemoreceptor that does not have a sugar substrate.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Bacterial Chemotaxis as a Model Behavioral System (Raven, New York, 1980).

  2. 2.

    & Int. Rev. Cytol. 81, 33–70 (1983).

  3. 3.

    & J. Bact. 163, 586–594 (1985).

  4. 4.

    & Proc. natn. Acad. Sci. U.S.A. 77, 7157–7161 (1980).

  5. 5.

    & Nature 230, 101–104 (1971).

  6. 6.

    , & Biochemistry 18, 5599–5605 (1979).

  7. 7.

    & J. Bact. 112, 315–326 (1972).

  8. 8.

    & J. Bact. 118, 560–576 (1974).

  9. 9.

    , & Proc. natn. Acad. Sci. U.S.A. 74, 3312–3316 (1977).

  10. 10.

    , & Proc. natn. Acad. Sci. U.S.A. 76, 260–264 (1977).

  11. 11.

    & J. Bact. 155, 565–577 (1983).

  12. 12.

    , , & Cell 33, 615–622 (1983).

  13. 13.

    , & Cell 26, 333–343 (1981).

  14. 14.

    & J. Bact. 155, 1434–1438 (1983).

  15. 15.

    , , & J. biol. Chem. 260, 10812–10816 (1985).

  16. 16.

    & Meth. Enzym. 125, 365–377 (1986).

  17. 17.

    Microbiology, 17–20 (ASM, Washington, DC, 1984).

  18. 18.

    Payne, J. W. (ed.) Microorganisms and Nitrogen Sources, 211–256 (Wiley, Chichester, UK, 1980).

  19. 19.

    , , & J. Bact. 153, 830–836 (1983).

  20. 20.

    & J. Bact. 153, 1548–1551 (1983).

  21. 21.

    & (in preparation).

  22. 22.

    , & J. Bact. 160, 122–130 (1984).

  23. 23.

    & J. Bact. 160, 131–136 (1984).

  24. 24.

    & J. Bact. 151, 106–113 (1982).

  25. 25.

    J. gen. Microbiol. 74, 77–91 (1973).

  26. 26.

    & J. Bact. 161, 96–104 (1985).

  27. 27.

    & J. Bact. 164, 1057–1063 (1985).

  28. 28.

    & J. gen. Microbiol. 130, 2915–2920 (1984).

  29. 29.

    , , & J. boil. Chem. 260, 9727–9733 (1985).

  30. 30.

    , & J. Bact. 138, 739–747 (1979).

  31. 31.

    & J. Bact. 165, 34–40 (1986).

  32. 32.

    & Trends. biochem. Sci. 8, 97–100 (1983).

  33. 33.

    A. Rev. Biochem. (in the press).

  34. 34.

    & J. Bact. 160, 943–948 (1984).

  35. 35.

    J. Bact. 120, 139–146 (1974).

  36. 36.

    & J. Bact. 165, 276–282 (1986).

Download references

Author information

Affiliations

  1. Fachbereich Biologie, Universität Konstanz, D-7750 Konstanz, FRG

    • Michael D. Manson
    • , Volker Blank
    •  & Gabriele Brade
  2. Molecular Genetics Laboratory, Department of Biochemistry, University of Dundee, Dundee DD1 4HN, UK

    • Christopher F. Higgins

Authors

  1. Search for Michael D. Manson in:

  2. Search for Volker Blank in:

  3. Search for Gabriele Brade in:

  4. Search for Christopher F. Higgins in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/321253a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.