Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Weakly interacting massive particles and solar oscillations

Abstract

If the Sun were to contain even a minute mass fraction of weakly interacting massive particles (WIMPs), there could be a significant influence on its central thermal structure. In particular, a relative concentration as small as 10−11 by number may lower the central temperature sufficiently to bring the predicted electron neutrino detection rate into agreement with observation1–6. Helioseismology7,8 provides a means for an independent test of the validity of this and other proposed resolutions of the solar neutrino problem. Theoretically, it is the low-degree g modes that are most sensitive to conditions in the core, the only region where substantial deviations from so-called standard solar models occur. Indeed, solar models with WIMPs have a g-mode period spacing that is markedly different from that of other solar models. Therefore g-mode observations hold the promise of a sensitive test, although unfortunately their current interpretation is fraught with difficulties. The best test currently available involves instead the frequency separation of low-degree p modes with like (nl) (where n and l are respectively the order and degree of the mode). Standard solar models produce p-mode separations somewhat larger than those observed. Conventional attempts to resolve the solar neutrino problem9,10 make the situation worse; in some cases, grossly so. We show that, in contrast, a relevant WIMP model predicts p-mode separations that are reduced by 10%; this is consistent with the observations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Steigman, G., Sarazin, C. L., Quintana, H. & Faulkner, J. Astr. J. 83, 1050–1061 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Faulkner, J. & Gilliland, R. L. Astrophys. J. 299, 994–1000 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Gilliland, R. L., Faulkner, J., Press, W. H. & Spergel, D. N. Astrophys. J. (in the press).

  4. Spergel, D. N. & Press, W. H. Astrophys. J. 294, 663–673 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Press, W. H. & Spergel, D. N. Astrophys. J. 296, 679–684 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Krauss, L. M., Freese, K., Spergel, D. N. & Press, W. H. Astrophys. J. 299, 1001–1006 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Gough, D. O. Adv. Space Res. 4, 85–102 (1984).

    Article  ADS  Google Scholar 

  8. Gough, D. O. in Solar Physics and Interplanetary Travelling Phenomena (eds Chen Baio & de Jager, C.) (Yunnan Observatory, Kunming, 1985).

    Google Scholar 

  9. Iben, I. Ann. Phys. 54, 164–203 (1969).

    Article  ADS  CAS  Google Scholar 

  10. Schatzman, E., Maeder, A., Angrand, F. & Glowinski, R. Astr. Astrophys. 96, 1–16 (1981).

    ADS  CAS  Google Scholar 

  11. Cleveland, B. T., Davis, R. & Rowley, J. K. in Resonance Ionization Spectroscopy 1984 (eds Hurst, G. S. & Payne, M. G.) 241–261 (Institute of Physics Conf. Ser. 71, Bristol, (1984).

    Google Scholar 

  12. Gabriel, G. Astr. Astrophys. 134, 387–389 (1984).

    ADS  Google Scholar 

  13. Claverie, A. et al. Nature 293, 443–445 (1981).

    Article  ADS  Google Scholar 

  14. Grec, G., Fossat, E. & Pomerantz, M. Sol. Phys. 82, 55–66 (1983).

    Article  ADS  Google Scholar 

  15. Woodard, M. & Hudson, H. S. Nature 305, 589–593 (1983).

    Article  ADS  Google Scholar 

  16. Harvey, J. W. & Duvall, T. L. Jr in Solar Seismology from Space (eds Ulrich, R. K. et al..) 165–172 (Jet Propulsion Lab. Publ. 84–84, Pasadena, 1984).

    Google Scholar 

  17. Gough, D. O. Phys. Bull. 34, 502–507 (1983).

    Article  ADS  Google Scholar 

  18. Abraham, Z. & Iben, I. Astrophys. J. 170, 157–163 (1971).

    Article  ADS  CAS  Google Scholar 

  19. Bahcall, J. N. & Ulrich, R. K. Astrophys. J. 170, 593–603 (1971).

    Article  ADS  CAS  Google Scholar 

  20. Joss, P. Astrophys. J. 191, 771–774 (1974).

    Article  ADS  CAS  Google Scholar 

  21. Christensen-Dalsgaard, J., Gough, D. O. & Morgan, J. G. Astr. Astrophys. 73, 131–128; 79, 260 (1979).

    Google Scholar 

  22. Tassoul, M. Astrophys. J. Suppl. Ser. 43, 469–490 (1980).

    Article  ADS  Google Scholar 

  23. Christensen-Dalsgaard, J. Mon. Not. R. astr. Soc. 199, 735–736 (1982).

    Article  ADS  CAS  Google Scholar 

  24. Faulkner, J. thesis, Univ. Cambridge (1964).

  25. Faulkner, J. Astrophys. J. 144, 978–994 (1966).

    Article  ADS  Google Scholar 

  26. Christensen-Dalsgaard, J. et al. Nature 315, 378–382 (1985).

    Article  ADS  Google Scholar 

  27. Ulrich, R. K. & Rhodes, E. Jr. Astrophys. J. 265, 551–563 (1983).

    Article  ADS  CAS  Google Scholar 

  28. Vandakurov, Yu, V. Astr. Zh. 44, 786–797 (1967).

    ADS  Google Scholar 

  29. Zahn, J.-P. Astr. Astrophys. 4, 452–461 (1970).

    ADS  Google Scholar 

  30. Deubner, F.-L. & Gough, D. O. A. Rev. Astr. Astrophys. 22, 593–619 (1984).

    Article  ADS  Google Scholar 

  31. Berthomieu, G., Provost, J. & Schatzman, E. Nature 308, 254–257 (1984).

    Article  ADS  Google Scholar 

  32. Christensen-Dalsgaard, J. in Seismology of the Sun and the Distant Stars (ed. Gough, D. O.), 23–53 (Reidel, Dordrecht, 1986).

    Book  Google Scholar 

  33. Cox, A. N. & Kidman, R. B. Theoretical Problems in Stellar Stability and Oscillations (eds Noels, A. & Gabriel, M.) 259–262 (Institute d'Astrophysique, Liège, 1984).

    Google Scholar 

  34. Christensen-Dalsgaard, J., Däppen, W. & Gilliland, R. L. Nature this issue (1986).

  35. Shibahashi, H., Gabriel, M. & Noels, A. Astr. Astrophys. 123, 283–288 (1983).

    ADS  Google Scholar 

  36. Ulrich, R. K. & Rhodes, E. J. Jr in Solar Seismology from Space (eds Ulrich, R. K. et al.) 371–377 (Jet Propulsion Lab. Publ. 84–84, Pasadena, (1984).

    Google Scholar 

  37. Bahcall, J. N. Phys. Rev. Lett. 23, 251–254 (1969).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faulkner, J., Gough, D. & Vahia, M. Weakly interacting massive particles and solar oscillations. Nature 321, 226–229 (1986). https://doi.org/10.1038/321226a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321226a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing