Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Potentiation of synaptic transmission in the hippocampus by phorbol esters

Abstract

Protein kinase C (PKC), a calcium-dependent phospholipid-sensitive kinase which is selectively activated by phorbol esters, is thought to play an important role in several cellular processes1,2. In mammalian brain PKC is present in high concentrations1 and has been shown to phosphorylate several substrate phospho-proteins3–6, one of which may be involved in the generation of long-term potentiation (LTP)7,8, a long-lasting increase in synaptic efficacy evoked by brief, high-frequency stimulation. Since the hippocampus contains one of the brain's highest levels of binding sites for phorbol esters9 and is the site where LTP has been most thoroughly characterized, we examined the effects of phorbol esters on hippocampal synaptic transmission and LTP. We found that phorbol esters profoundly potentiate excitatory synaptic transmission in the hippocampus in a manner that appears indistinguishable from LTP. Furthermore, after maximal synaptic enhancement by phorbol esters, LTP can no longer be elicited. Although the site of synaptic enhancement during LTP is not clearly established, phorbol esters appear to potentiate synaptic transmission by acting primarily at a presynaptic locus since changes in the postsynaptic responses to the putative transmitter, glutamate, cannot account for the increased synaptic responses induced by phorbol esters. These findings, in conjunction with previous biochemical studies, raise the possibility that, in mammalian brain, PKC plays a role in controlling the release of neurotransmitter and may be involved in the generation of LTP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nishizuka, Y. Nature 308, 693–698 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Baker, P. F. Nature 310, 629–630 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Wu, W.C.-S., Walaas, S.I., Nairn, A. C. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 79, 5249–5253 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Sorensen, R. G., Kleine, L. P. & Mahler, H. R. Brain Res. Bull. 7, 57–61 (1981).

    Article  CAS  Google Scholar 

  5. Kristjansson, G. I., Zwiers, H., Oestreicher, A. B. & Gispen, W. H. J. Neurochem. 39, 371–378 (1982).

    Article  CAS  Google Scholar 

  6. Aloyo, V. J., Zwiers, H. & Gispen, W. H. J. Neurochem. 41, 649–653 (1983).

    Article  CAS  Google Scholar 

  7. Nelson, R. B. & Routtenberg, A. Expl Neurol. 89, 213–224 (1985).

    Article  CAS  Google Scholar 

  8. Akers, R. F. & Routtenberg, A. Brain Res. 334, 147–151 (1985).

    Article  CAS  Google Scholar 

  9. Murphy, K. M. M., Gould, R. J., Oster-Granite, M. L., Gearhart, J. D. & Snyder, S. H. Science 222, 1036–1038 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Alger, B. E. & Nicoll, R. A. J. Physiol., Lond. 328, 105–123 (1982).

    Article  CAS  Google Scholar 

  11. Castagna, M. et al. J. biol Chem. 257, 7847–7851 (1982).

    CAS  PubMed  Google Scholar 

  12. Baraban, J. M., Snyder, S. H. & Alger, B. E. Proc. natn. Acad. Sci. U.S.A. 82, 2538–2542 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Malenka, R. C., Madison, D. V., Andrade, R. & Nicoll, R. A. J. Neurosci. 6, 475–480 (1986).

    Article  CAS  Google Scholar 

  14. Harris, E. W., Ganong, A. H. & Cotman, C. W. Brain Res. 323, 132–137 (1984).

    Article  CAS  Google Scholar 

  15. Cotman, C. W. & Nadler, J. V. in Glutamate: Transmitter in the Central Nervous System (eds Roberts, P. J., Storm-Mathisen, J. & Johnston, G. A. R.) 117–154 (Wiley, Chichester, 1981).

    Google Scholar 

  16. Andersen, P., Sundberg, S. H., Sveen, O., Swann, J. W. & Wigström, H. J. Physiol., Lond. 302, 463–482 (1980).

    Article  CAS  Google Scholar 

  17. Lovinger, D., Colley, P., Linden, D. J., Murakami, K. & Routtenberg, A. Soc. Neurosci. Abstr. 11, 927– (1985).

    Google Scholar 

  18. Kandel, E. R. Nature 293, 697–700 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Briggs, C. A., McAfee, D. A. & McCaman, R. E. J. Physiol., Lond. 363, 181–190 (1985).

    Article  CAS  Google Scholar 

  20. Koyano, K., Kuba, K. & Minota, S. J. Physiol., Lond. 359, 219–233 (1985).

    Article  CAS  Google Scholar 

  21. Baxter, D. A., Bittner, G. D. & Brown, T. H. Proc. natn. Acad. Sci. U.S.A. 82, 5978–5982 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Girard, P. R., Mazzei, G. J., Wood, J. G. & Kuo, J. F. Proc. natn. Acad. Sci. U.S.A. 82, 3030–3034 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Nichols, R. A., Haycock, J. W., Wang, J.K.-T. & Greengard, P. Soc. Neurosci. Abstr. 11, 846 (1985).

    Google Scholar 

  24. Zurgil, N. & Zisapel, N. FEBS Lett. 185, 257–261 (1985).

    Article  CAS  Google Scholar 

  25. Bartschat, D. K. & Blaustein, M. P. J. Physiol., Lond. 361, 441–457 (1985).

    Article  CAS  Google Scholar 

  26. Kandel, E. R. & Schwartz, J. H. Science 218, 433–443 (1982).

    Article  ADS  CAS  Google Scholar 

  27. DeRiemer, S. A., Strong, J. A., Albert, K. A., Greengard, P. & Kaczmarek, L. K. Nature 313, 313–316 (1985).

    Article  ADS  CAS  Google Scholar 

  28. Dolphin, A. C., Errington, M. L. & Bliss, T. V. P. Nature 297, 496–498 (1982).

    Article  ADS  CAS  Google Scholar 

  29. Bliss, T. V. P., Douglas, R. M., Errington, M. L. & Lynch, M. J. Physiol., Lond. 361, 50P (1985).

    Google Scholar 

  30. Lynch, G., Larson, J., Kelso, S., Barrionuevo, G. & Schottler, F. Nature 305, 719–721 (1983).

    Article  ADS  CAS  Google Scholar 

  31. Wigström, H. & Gustafsson, B. Nature 301, 603–604 (1983).

    Article  ADS  Google Scholar 

  32. Browning, M., Dunwiddie, T., Bennett, W., Gispen, W. & Lynch, G. Science 203, 60–62 (1979).

    Article  ADS  CAS  Google Scholar 

  33. Bär, P. R., Schotman, P., Gispen, W. H., Tielen, A. M. & Lopes da Silva, F. H. Brain Res. 198, 478–484 (1980).

    Article  Google Scholar 

  34. Wolf, M., LeVine, H. III, May, W. S. Jr, Cuatrecasas, P. & Sahyoun, N. Nature 317, 546–549 (1985).

    Article  ADS  CAS  Google Scholar 

  35. Alger, B. E. & Teyler, T. J. Brain Res. 110, 463–480 (1976).

    Article  CAS  Google Scholar 

  36. Akers, R. F., Lovinger, D. M., Colley, P. A., Linden, D. J. & Routtenberg, A. Science 231, 587–589 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malenka, R., Madison, D. & Nicoll, R. Potentiation of synaptic transmission in the hippocampus by phorbol esters. Nature 321, 175–177 (1986). https://doi.org/10.1038/321175a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321175a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing