Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spectrin assembly in avian erythroid development is determined by competing reactions of subunit homo- and hetero-oligomerization

Abstract

Erythroid differentiation entails the biogenesis of a membrane skeleton, a network of proteins underlying and interacting with the plasma membrane1–3, whose major constituent is the heterodimeric protein spectrin, composed of two structurally similar but distinct subunits4, α (relative molecular mass (Mr) 240,000) and β (Mr 220,000), which interact side-on with each other to form a long rod-like molecule1,3,5–10. Interaction of this network with the membrane is mediated by the binding of the β subunit to ankyrin1,6,11–14, which in turn binds to the cytoplasmic domain of the transmembrane anion transporter (also referred to as band 3)1,15–19. Purified α and β subunits of spectrin from the membrane of mature red blood cells will spontaneously heterodimerize13,14,20–23, suggesting that assembly of the spectrinactin skeleton is a simple self-assembly process, but in vivo studies with developing chicken embryo erythroid cells have indicated that assembly in vivo is more complex24–29. We now present evidence that newly synthesized spectrin subunits in vivo or in vitro rapidly adopt one of two competing conformations, a heterodimer or a homo-oligomer. These competing reactions seem to determine the overall extent of spectrin assembled during erythroid development by determining which conformation will assemble onto the membrane-skeleton (the heterodimer) and which conformations are targeted for degradation (the homo-oligomers).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Branton, D., Cohen, C. M. & Tyler, J. Cell 24, 24–32, (1981).

    Article  CAS  PubMed  Google Scholar 

  2. Sheetz, M. P. Semin. Hemat. 20, 175–188 (1983).

    CAS  PubMed  Google Scholar 

  3. Yu, J., Fischman, D. A. & Steck, T. J. supramolec. Struct. 1, 233–248 (1973).

    Article  CAS  Google Scholar 

  4. Speicher, D. & Marchesi, V. T. Nature 311, 177–180 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Shotton, D., Burke, B. & Branton, D. Biochim. biophys. Acta 536, 303–329 (1978).

    Article  Google Scholar 

  6. Cohen, C. M. Semin Hemat. 20, 141–158 (1983).

    CAS  PubMed  Google Scholar 

  7. Marchesi, V. T. A. Rev. Cell Biol. (in the press).

  8. Ungewickell, E., Bennett, P., Calvert, R., Ohanian, V. & Gratzer, W. B. Nature 280, 811–814 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Fowler, V. & Taylor, D. L. J. Cell Biol. 85, 361–376 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Pinder, J. C. & Gratzer, W. B. J. Cell Biol. 96, 768–775 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bennett, V. & Stenbuck, P. J. J. biol. Chem. 254, 2533–2541 (1979).

    CAS  PubMed  Google Scholar 

  12. Luna, E. J., Kidd, G. H. & Branton, D. J. biol. Chem. 254, 2526–2532 (1979).

    CAS  PubMed  Google Scholar 

  13. Calvert, R., Bennett, P. & Gratzer, W. B. Eur. J. Biochem. 107, 355–361 (1980).

    Article  CAS  PubMed  Google Scholar 

  14. Litman, D., Hsu, C. J. & Marchesi, V. T. J. Cell Sci. 42, 1–22 (1980).

    CAS  PubMed  Google Scholar 

  15. Bennett, V. & Stenbuck, P. Nature 280, 468–473 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Bennett, V. & Stenbuck, P. J. biol. Chem. 255, 6424–6432 (1980).

    CAS  PubMed  Google Scholar 

  17. Hargreaves, W. R., Giedd, K. N., Verkleij, A. & Branton, D. J. biol. Chem. 255, 11965–11972 (1980).

    CAS  PubMed  Google Scholar 

  18. Anderson, R. A. & Lovrien, R. E. Nature 307, 655–658 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Pasternak, G. R., Anderson, R. A., Leto, T. L. & Marchesi, V. T. J. biol. Chem. 260, 3676–3683 (1985).

    Google Scholar 

  20. Yoshino, H. & Marchesi, V. T. J. biol. Chem. 259, 4496–4500 (1984).

    CAS  PubMed  Google Scholar 

  21. Ungewickell, E. & Gratzer, W. B. Eur. J. Biochem. 88, 379–385 (1978).

    Article  CAS  PubMed  Google Scholar 

  22. Morrow, J. S. & Marchesi, V. T. J. Cell Biol. 88, 463–468 (1981).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, S.-C., Windisch, P., Kim, S. & Palek, J. Cell 37, 587–594 (1984).

    Article  CAS  PubMed  Google Scholar 

  24. Blikstad, I., Nelson, W. J., Moon, R. T. & Lazarides, E. Cell 32, 1081–1091 (1983).

    Article  CAS  PubMed  Google Scholar 

  25. Moon, R. T. & Lazarides, E. J. Cell Biol. 98, 1899–1904 (1984).

    Article  CAS  PubMed  Google Scholar 

  26. Cox, J. V., Moon, R. T. & Lazarides, E. J. Cell Biol. 100, 1548–1557 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Granger, B. L. & Lazarides, E. Nature 313, 238–241 (1984).

    Article  ADS  Google Scholar 

  28. Weise, M. J. & Chan, L.-N. L. J. biol. Chem. 253, 1892–1897 (1978).

    CAS  PubMed  Google Scholar 

  29. Woods, C. M. & Lazarides, E. Cell 40, 959–969 (1985).

    Article  CAS  PubMed  Google Scholar 

  30. Davies, J. & Bennett, V. J. biol. Chem. 258, 7757–7766 (1983).

    Google Scholar 

  31. Moon, R. T. & Lazarides, E. Nature 305, 62–64 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Karplus, M. & Weaver, D. L. Nature 260, 404–406 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Harrison, S. C. & Durbin, R. Proc. natn. Acad. Sci. U.S.A. 82, 4028–4030 (1985).

    Article  ADS  CAS  Google Scholar 

  34. Wasenius, V.-H., Saraste, M., Knowles, J., Virtanen, I. & Lehto, V.-P. EMBO J. 4, 1425–1430 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Birkenmeier, C. S. et al. Proc. natn. Acad. Sci. U.S.A. 82, 5671–5675 (1985).

    Article  ADS  CAS  Google Scholar 

  36. Hubbard, B. & Lazarides, E. J. Cell Biol. 80, 166–182 (1979).

    Article  CAS  PubMed  Google Scholar 

  37. Bennett, V. & Branton, D. J. biol. Chem. 252, 2753–2763 (1977).

    CAS  PubMed  Google Scholar 

  38. Jackson, R. T. & Hunt, T. Meth. Enzym. 96, 50–73 (1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woods, C., Lazarides, E. Spectrin assembly in avian erythroid development is determined by competing reactions of subunit homo- and hetero-oligomerization. Nature 321, 85–89 (1986). https://doi.org/10.1038/321085a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321085a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing