Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fluorescently labelled Na+ channels are localized and immobilized to synapses of innervated muscle fibres

Abstract

Segregation of voltage-dependent sodium channels to the hillock of motoneurones and nodes of Ranvier in myelinated axons is crucial for conduction of the nerve impulse1,2. Much less is known, however, about the distribution of voltage-dependent Na+ channels on muscle fibres. Recently, Beam et al.3 have shown that Na+ channels are concentrated near the neuromuscular junction. To determine the topography and mechanisms governing the distribution of voltage-dependent Na+ channels on muscle, microfluorimetry and fluorescence photobleach recovery (FPR) have now been used to measure the density and lateral mobility of fluorescently labelled Na+ channels on uninnervated and innervated muscle fibres. On uninnervated myotubes, Na+ channels are diffusely distributed and freely mobile, whereas after innervation the channels concentrate at neuronal contact sites. These channels are immobile and co-localize with acetylcholine receptors (AChRs). At extrajunctional regions the Na+ channel density is lower and the channels more mobile. The results suggest that the nerve induces Na+ channels to redistribute, immobilize and co-localize with AChRs at sites of neuronal contact.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Coombs, J. S., Eccles, J. C. & Fatt, P. J. Physiol., Lond. 130, 291–325 (1955).

    Article  CAS  Google Scholar 

  2. Waxman, S. G. & Ritchie, J. M. Science 228, 1502–1507 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Beam, K. G., Caldwell, J. H. & Campbell, J. T. Nature 313, 588–590 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Angelides, K. J. & Nutter, T. J. J. biol. Chem. 258, 11948–11957 (1983).

    CAS  PubMed  Google Scholar 

  5. Darbon, H. & Angelides, K. J. J. biol. Chem. 259, 6074–6084 (1984).

    CAS  PubMed  Google Scholar 

  6. Angelides, K. J. Biochemistry 20, 4107–4118 (1981).

    Article  CAS  Google Scholar 

  7. Axelrod, D. A., Koppel, D. E., Schlessinger, J., Elson, E. L. & Webb, W. W. Biophys. J. 16, 1055–1069 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Ravdin, P. & Axelrod, D. A. Analyt. Biochem. 58, 585–592 (1977).

    Article  Google Scholar 

  9. Role, L. W., Matossian, V. R., O'Brien, R. J. & Fischbach, G.-D. J. Neurosci. 5, 2197–2204 (1985).

    Article  CAS  Google Scholar 

  10. Roberts, W. M. & Almers, W. Biophys. J. 47, abstr. 189 (1985).

    Google Scholar 

  11. Brockes, J. P. & Hall, Z. W. Biochemistry 14, 2100–2106 (1975).

    Article  CAS  Google Scholar 

  12. Cohen, S. & Barchi, R. L. Biochim. biophys. Acta 645, 253–261 (1981).

    Article  CAS  Google Scholar 

  13. Elmer, L. W., O'Brien, B., Nutter, T. J. & Angelides, K. J. Biochemistry 24, 8128–8137 (1985).

    Article  CAS  Google Scholar 

  14. Klausner, R. D., Kleinfeld, A. M., Hoover, R. L. & Karnovsky, M. J. biol. Chem. 255, 1286–1295 (1980).

    CAS  PubMed  Google Scholar 

  15. Stuhmer, W. & Almers, W. Proc. natn. Acad. Sci. U.S.A. 79, 946–950 (1983).

    Article  ADS  Google Scholar 

  16. Stya, M. & Axelrod, D. A. Proc. natn. Acad. Sci. U.S.A. 80, 449–453 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angelides, K. Fluorescently labelled Na+ channels are localized and immobilized to synapses of innervated muscle fibres. Nature 321, 63–66 (1986). https://doi.org/10.1038/321063a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321063a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing