Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Input of excess CO2 to the surface ocean based on 13C/12C ratios in a banded Jamaican sclerosponge

Abstract

The CO2 content of the atmosphere has increased during the past two centuries as a result of the combustion of fossil fuels for energy1 and the reduction of forest and soil carbon reservoirs on land2. The amount of CO2 added to the atmosphere from fossil-fuel burning is known from historical records1 (±10%), but the contribution from reduction of the terrestrial biosphere is far less certain. Several authors have estimated the relative contributions from the two sources by measuring the change in the 13C/12C ratio in atmospheric CO2 as revealed in tree rings3–8 (CO2 derived from these two sources is depleted in 13C with respect to that in the atmosphere). Using trees in the Northern Hemisphere, recent estimates of the integrated CO2 release from the terrestrial biosphere since AD 1800 ranged from 70% (ref. 5) to 90% (ref. 9) of that released from fossil fuels. Here we present surface ocean δ13C and δ18O records measured in the skeleton of a living sclerosponge (Ceratoporella nicholsoni), which accretes aragonite in isotopic equilibrium with the surrounding sea water/dissolved inorganic carbon (DIC) system. The δ13C record reveals a decrease of 0.50‰ from 1820 to 1972. Using a model of the world carbon cycle and a deconvolution of our δ13C data, we estimate that the amount of excess CO2 derived from the terrestrial biosphere is 38% of that from fossil-fuel sources. Our model calculations support a preindustrial CO2 concentration in the atmosphere of 280 p.p.m.v. (parts per million by volume), in agreement with direct measurements of air occluded in Antarctic ice cores10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Keeling, C. D. Tellus 25, 174–198 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Houghton, R. A. et al. Ecol. Monogr. 53, 235–262 (1983).

    Article  CAS  Google Scholar 

  3. Rebello, A. & Wagener, K. Environmental Biogeochemistry (ed. Nriagu, J. O.) 13–23 (Ann Arbor Science, Ann Arbor, 1976).

    Google Scholar 

  4. Pearman, G. J., Francey, R. J. & Fraser, P. J. B. Nature 260, 771–773 (1976).

    Article  ADS  Google Scholar 

  5. Stuiver, M., Burk, R. L. & Quay, P. D. J. Geophys. Res. 89, (D7), 11731–11748 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Harkness, D. D. & Miller, B. F. Radiocarbon 22, 291–298 (1980).

    Article  CAS  Google Scholar 

  7. Francey, R. J. Nature 290, 232–235 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Freyer, H. D. Proc. 6th ORNL Life Sci. Symp., Oak Ridge (eds Trabalka, J. R. & Reichle, D. E.) (Springer, New York, in the press).

  9. Peng, T.-H. Geophys. Monogr. 32, 123–131 (1985).

    Google Scholar 

  10. Neftel, A., Moore, E., Oeschger, H. & Stauffer, B. Nature 315, 45–47 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Farquhar, G. D., O'Leary, M. H. & Berry, J. A. Aust. J. Pl. Physiol. 9, 121–137 (1982).

    CAS  Google Scholar 

  12. Francey, R. J. & Farquhar, G. D. Nature 297, 28–31 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Nozaki, Y., Rye, D. M., Turekian, K. K. & Dodge, R. E. Geophys. Res. Lett. 5, 825–828 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Chivas, A. R., Aharon, P., Chappell, J., Vlastuin, C. & Kiss, E. Proc. Inaugural Great Barrier Reef Conf., Townsville, 77–81 (J.C.U. Press, Townsville, 1983).

  15. Weber, J. N. Deep Sea Res. 20, 901–910 (1973).

    CAS  Google Scholar 

  16. Emiliani, C., Hudson, J. H., Shinn, E. A. & George, R. Y. Science 202, 627–629 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Land, L. S., Lang, J. C. & Barnes, D. J. Geochim. cosmochim. Acta 41, 169–172 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Hartman, W. D. & Goreau, T. F. Symp. zool. Soc. Lond. 25, 205–243 (1970).

    Google Scholar 

  19. Benavides, L. & Druffel, E. R. M. Coral Reefs (in the press).

  20. Swart, P. K. Earth Sci. Rev. 19, 51–80 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Weber, J. N. & Woodhead, P. M. J. J. geophys. Res. 77, 463–473 (1972).

    Article  ADS  CAS  Google Scholar 

  22. Fairbanks, R. G. & Dodge, R. E. Geochim. cosmochim. Acta 43, 1009–1020 (1979).

    Article  ADS  CAS  Google Scholar 

  23. Weil, S. M., Buddemeier, R. W., Smith, S. V. & Kroopnick, P. M. Geochim. cosmochim. Acta 45, 1147–1153 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Dunbar, R. B. & Wellington, G. M. Nature 293, 453–455 (1981).

    Article  ADS  CAS  Google Scholar 

  25. Druffel, E. R. M. Geophys. Monogr. 32, 111–122 (1985).

    Google Scholar 

  26. Kroopnick, P. Deep Sea Res. 32, 57–84 (1985).

    Article  ADS  CAS  Google Scholar 

  27. Epstein, S., Buchsbaum, R., Lowenstam, H. A. & Urey, H. C. Bull. geol. Soc. Am. 64, 1315–1326 (1953).

    Article  CAS  Google Scholar 

  28. Rubinson, M. & Clayton, R. N. Geochim. cosmochim. Acta 33, 997–1002 (1969).

    Article  ADS  CAS  Google Scholar 

  29. Tarutani, T., Clayton, R. N. & Mayeda, T. K. Geochim. cosmochim. Acta 33, 987–996 (1969).

    Article  ADS  CAS  Google Scholar 

  30. Emanuel, W. R., Killough, G. G., Post, W. M., Shugart, H. H. & Stevenson, M. P. Dep. Envir. Docum. No. DOE/NBB-0062, UC-11, 79 (1984).

  31. Oeschger, H., Siegenthaler, U., Schotterer, U. & Gugelmann, A. Tellus 27, 168–192 (1975).

    Article  ADS  CAS  Google Scholar 

  32. Keeling, C. D., Bacastow, R. B. & Whorf, T. P. Carbon Dioxide Review: 1982 (ed. Clark, W. C.) 377–385 (Oxford University Press, 1982).

    Google Scholar 

  33. Rotty, R. M. Carbon Cycle Modelling, SCOPE 16 (ed. Bolin, B.) 121–123 (Wiley, New York, 1981).

    Google Scholar 

  34. Keeling, C. D., Mook, W. G. & Tans, P. P. Nature 277, 121–123 (1979).

    Article  ADS  CAS  Google Scholar 

  35. Siegenthaler, U. & Oeschger, H. Tellus (in the press).

  36. Peng, T.-H. & Freyer, H. D. Proc. 6th ORNL Life Sci. Symp. Oak Ridge (eds Trabalka, J. R. & Reichle, D. E.) (Springer, New York, in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Druffel, E., Benavides, L. Input of excess CO2 to the surface ocean based on 13C/12C ratios in a banded Jamaican sclerosponge. Nature 321, 58–61 (1986). https://doi.org/10.1038/321058a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321058a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing