Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tidal reorientation and the fracturing of Jupiter's moon Europa

Abstract

The most striking characteristic of Europa is the network of long linear albedo markings over the surface, suggestive of global-scale tectonic processes. Various explanations for the fractures have been proposed: freezing and expansion of an early liquid water ocean1, planetary expansion due to dehydration of hydrated silicates2, localization by weak points in the crust generated by impacts3, and a combination of stresses due to planetary volume change and tidal distortions from orbital recession and orbital eccentricity4,5. Calculations by Yoder6 and Greenberg and Weidenschilling7 have shown that Europa may rotate slightly more rapidly than the synchronous rate, with a rotation period (reorientation through 360°) ranging from 20 to >103 yr if a liquid mantle is present, or up to 1010 yr if the satellite is essentially solid7. Helfen-stein and Parmentier8 modelled the stresses due to nonsynchronous rotation, and concluded that this could explain the long fractures in part of the anti-jovian hemisphere. In this note, I present a global map of lineaments with long arc lengths (>20° or 550 km), and compare the lineament orientations to the tensile stress trajectories due to tidal distortions (changes in the lengths of three principal semiaxes) and to nonsynchronous rotation (longitudinal reorientation of two of the principal semiaxes). An excellent orthogonal fit to the lineaments is achieved by the stresses due to nonsynchronous rotation with the axis radial to Jupiter located 25° east of its present position. This fit suggests that nonsynchronous rotation occurred at some time in Europa's history.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smith, B. A. et al. Science 204, 951–972 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Finnerty, A. A., Ronsford, G. A., Pieri, D. C. & Collerson, K. D. Nature 289, 24–27 (1981).

    Article  ADS  Google Scholar 

  3. Lucchitta, B. K. & Soderblom, L. A. in Satellites of Jupiter (ed. Morrison, D.) 521–555 (University of Arizona Press, Tucson, 1982).

    Google Scholar 

  4. Helfenstein, P. & Parmentier, E. M. Proc. 11th lunar planet. Sci. Conf., 1987–1998 (1980).

  5. Helfenstein, P. & Parmentier, E. M. Icarus 53, 415–430 (1983).

    Article  ADS  Google Scholar 

  6. Yoder, C. F. Nature 279, 767–770 (1979).

    Article  ADS  Google Scholar 

  7. Greenberg, R. & Weidenschilling, S. J. Icarus 58, 186–196 (1984).

    Article  ADS  Google Scholar 

  8. Helfenstein, P. & Parmentier, E. M. Icarus 61, 175–184 (1985).

    Article  ADS  Google Scholar 

  9. Clark, R. N. Icarus 44, 388–409 (1981).

    Article  ADS  Google Scholar 

  10. Griggs, D. T. & Handin, J. Mem. geol. Soc. Am. 79, 347–364 (1960).

    CAS  Google Scholar 

  11. Brace, W. F. in State of Stress in the Earth's Crust (ed. Judd, W. R.), 111–174 (Elsevier, New York, 1964).

    Google Scholar 

  12. Schenk, P. M. NASA TM-86247, 3–111 (1984).

  13. Cassen, P. M., Peale, S. J. & Reynolds, R. T. in Satellites of Jupiter (ed. Morrison, D.) 93–128 (University of Arizona Press, Tucson, 1982).

    Google Scholar 

  14. Golombek, M. P. J. geophys. Res. 90, 3065–3074 (1985).

    Article  ADS  Google Scholar 

  15. McEwen, A. S. J. geophys. Res. (in the press).

  16. Davies, M. E. & Katayama, F. Y. J. geophys. Res. 86, 8635–8657 (1981).

    Article  ADS  Google Scholar 

  17. Squyres, S. W., Reynolds, R. T., Cassen, P. M. & Peale, S. J. Nature 301, 225–226 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Pieri, D. C. Nature 289, 17–21 (1981).

    Article  ADS  Google Scholar 

  19. Melosh, H. J. Earth Planet Sci. Lett. 26, 353–360 (1975).

    Article  ADS  Google Scholar 

  20. Fleitout, L. & Thomas, P. G. Earth planet Sci. Lett. 58, 104–115 (1982).

    Article  ADS  Google Scholar 

  21. Buratti, B. J. Icarus 61, 208–217 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McEwen, A. Tidal reorientation and the fracturing of Jupiter's moon Europa. Nature 321, 49–51 (1986). https://doi.org/10.1038/321049a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321049a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing