Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A flare-induced cascade model of γ-ray bursts

Abstract

Although there is no agreement concerning the model and mechanisms responsible for γ-ray bursts, it is generally agreed that they are produced by neutron stars1. With few exceptions2, it is thought that an intense magnetic field plays a key role. The favoured radiation mechanism is optically thin synchrotron radiation3, but it is difficult to find any way of maintaining the electron energy since the radiation cooling time is extremely short. As a resolution of this difficulty, I propose that the basic energy-release mechanism is a flare in the magnetosphere of a neutron star. This involves reconnection that leads to an electric field parallel to the magnetic field. This accelerates an electron along the magnetic field, producing high-energy γ rays (by curvature radiation) that promptly annihilate in the magnetic field, resulting in an electron-positron cascade as in radio pulsars4. This model offers an explanation of the continuum spectrum, of the 511-keV annihilation line, and possibly of the optical radiation that seems to accompany some γ-ray bursts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Woosley, S. E. (ed.) High Energy Transients in Astrophysics (American Institute of Physics, New York, 1984).

  2. Colgate, S. A., Petschek, A. G. & Sarracino, R. In High-Energy Transients in Astropphysics (ed. Woolsey, S. E.) 548–554 (American Institute of Physics, New York, 1984).

    Google Scholar 

  3. Lamb, D. Q. in High Energy Transients in Astrophysics (ed. Woosley, S. E.) 512–547 (American Institute of Physics, New York, 1984).

    Google Scholar 

  4. Sturrock, P. A. Astrophys. J. 164, 529–556 (1971).

    Article  ADS  CAS  Google Scholar 

  5. Hameury, J. M., Lasota, J. P., Bonazzola, S. & Heyvaerts, J. Astrophys. J. 293 56–68.

  6. Liang, E. P. in High Energy Transients in Astrophysics (ed. Woosley, S. E.) 597–604 (American Institute of Physics, New York, 1984).

    Google Scholar 

  7. Liang, E. P. & Antiochos, S. K. Nature 310, 121–122 (1984).

    Article  ADS  Google Scholar 

  8. Svestka, Z. Solar Flares (Reidel, Dordrecht, 1976).

    Book  Google Scholar 

  9. Sturrock, P. A. in Solar Flares (ed. Sturrock, P. A.) 411–449 (Colorado University Press, Boulder, Colorado, 1980).

    Google Scholar 

  10. Soward, A. M. & Priest, E. R. Phil. Trans. R. Soc. A284, 369–417 (1974).

    Article  ADS  Google Scholar 

  11. Barat, C. in Positron-Electron Pairs in Astrophysics (eds Burns, M. L., Harding, A. K. & Ramaty, R.) 54–58 (American Institute of Physics, New York, 1983).

    Google Scholar 

  12. Nolan, P. L., Share, G. H., Forrest, D. J., Chupp, E. L., Matz, S. & Rieger, E. in Positron-Electron Pairs in Astrophysics (eds Burns, M. L., Harding, A. K. & Ramaty, R.) 59–63 (American Institute of Physics, New York, 1983).

    Google Scholar 

  13. Nolan, P. L., Share, G. H., Matz, S., Chupp, E. L., Forrest, D. J. & Rieger, E. in High-Eenergy Transients in Astrophysics (ed. Woosley, S. E.) 399–402 (American Institute of Physics, New York, 1984).

    Google Scholar 

  14. Kundu, M. R. Solar Radio Astronomy (Interscience, New York, 1965).

    Google Scholar 

  15. Liang, E. P. Nature 313, 202–204 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Schaefer, B. E. Nature 294, 722–724 (1981).

    Article  ADS  Google Scholar 

  17. Schaefer, B. E., Seitzer, P. & Bradt, H. V. Astrophys. J. Lett. 270, L49–L52 (1983).

    Article  ADS  Google Scholar 

  18. Heyvaerts, J., Priest, E. R. & Rust, D. M. Astrophys. J. 216, 123–137 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Sturrock, P. A., Kaufman, P., Moore, R. L. & Smith, D. F. Solar Phys. 94, 341–357 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Manchester, R. N. & Taylor, J. H. Pulsars, 164 (Freeman, San Francisco, (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sturrock, P. A flare-induced cascade model of γ-ray bursts. Nature 321, 47–49 (1986). https://doi.org/10.1038/321047a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321047a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing