Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Modulation of visual cortical plasticity by acetylcholine and noradrenaline

Abstract

During a critical period of postnatal development, the temporary closure of one eye in kittens will permanently shift the ocular dominance (OD) of neurones in the striate cortex to the eye that remains open1. The OD plasticity can be substantially reduced if the cortex is infused continuously with the catecholamine neurotoxin 6-hydroxydopamine (6-OHDA) during the period of monocular deprivation2–5, an effect that has been attributed to selective depletion of cortical noradrenaline6. However, several other methods causing noradrenaline (NA) depletion leave the plasticity intact7–10. Here we present a possible explanation for the conflicting results. Combined destruction of the cortical noradrenergic and cholinergic innervations reduces the physiological response to monocular deprivation although lesions of either system alone are ineffective. We also find that 6-OHDA can interfere directly with the action of acetylcholine (ACh) on cortical neurones. Taken together, our results suggest that intracortical 6-OHDA disrupts plasticity by interfering with both cholinergic and noradrenergic transmission and raise the possibility that ACh and NA facilitate synaptic modifications in the striate cortex by a common molecular mechanism.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Wiesel, T. N. & Hubel, D. H. J. Neurophysiol. 26, 1003–1017 (1963).

    CAS  Article  Google Scholar 

  2. Kasamatsu, T. & Pettigrew, J. D. Science 194, 206–209 (1976).

    ADS  CAS  Article  Google Scholar 

  3. Kasamatsu, T. & Pettigrew, J. D. J. comp. Neurol. 185, 139–162 (1979).

    CAS  Article  Google Scholar 

  4. Kasamatsu, T., Pettigrew, J. D. & Ary, M. J. comp. Neurol. 185, 163–182 (1979).

    CAS  Article  Google Scholar 

  5. Pettigrew, J. D. & Kasamatsu, T. Nature 271, 761–763 (1978).

    ADS  CAS  Article  Google Scholar 

  6. Kasamatsu, T. Prog. Psychobiol. physiol. Psychol. 10, 1–112 (1984).

    Google Scholar 

  7. Bear, M. F. et al. Nature 302, 245–247 (1983).

    ADS  CAS  Article  Google Scholar 

  8. Daw, N. W., Robertson, T. W., Rader, R. K., Videen, T. O. & Coscia, C. J. J. Neurosci. 4, 1354–1360 (1984).

    CAS  Article  Google Scholar 

  9. Daw, N. W., Videen, T. O., Parkinson, D. & Rader, R. K. J. Neurosci. 5, 1925–1933 (1985).

    CAS  Article  Google Scholar 

  10. Adrien, J. et al. J. Physiol., Lond. 367, 73–98 (1985).

    CAS  Article  Google Scholar 

  11. Potempska, A., Skangiel-Kramska, J. & Kossut, M. Devl Neurosci. 2, 38–45 (1979).

    CAS  Article  Google Scholar 

  12. Shaw, C., Needler, M. C. & Cynader, M. Devl Brain Res. 14, 295–299 (1984).

    CAS  Article  Google Scholar 

  13. Bear, M. F., Carnes, K. M. & Ebner, F. F. Jcomp.Neurol. 237, 519–532 (1985).

    CAS  Article  Google Scholar 

  14. Sillito, A. M. & Kemp, J. A. Brain Res. 289, 143–155 (1983).

    CAS  Article  Google Scholar 

  15. Sillito, A. M. Nature 303, 477–478 (1983).

    ADS  CAS  Article  Google Scholar 

  16. Rauschecker, J. P. & Singer, W. Nature 280, 58–60 (1979).

    ADS  CAS  Article  Google Scholar 

  17. Singer, W. in The Neurosciences: 4th Study Program, 1093–1110 (MIT Press Cambridge, 1979).

    Google Scholar 

  18. Singer, W. Expl Brain Res. 47, 209–222 (1982).

    CAS  Google Scholar 

  19. Singer, W. & Rauschecker, J. P. Expl Brain Res. 47, 223–233 (1982).

    CAS  Google Scholar 

  20. Bear, M. F., Carnes, K. M. & Ebner, F. F. J. comp. Neurol. 234, 411–430 (1985).

    CAS  Article  Google Scholar 

  21. Furness, J. B. in 6-Hydroxydopamine and Catecholamine Neurons, 205–214 (North-Holland, Amsterdam, 1971).

    Google Scholar 

  22. Francesconi, W., Müller, C. M. & Singer, W. Neurosci. Lett. 18, 309 (1984).

    Google Scholar 

  23. Kasamatsu, T., Itakura, T. & Jonsson, G. J. Pharmac. exp. Ther. 217, 841–850 (1981).

    CAS  Google Scholar 

  24. Geiger, H. & Singer, W., Expl Brain Res. Suppl. (in the press).

  25. Madison, D. V. & Nicoll, R. A. Nature 299, 636 (1982).

    ADS  CAS  Article  Google Scholar 

  26. Halliwell, J. V. & Adams, P. R. Brain Res. 250, 71 (1982).

    CAS  Article  Google Scholar 

  27. Nestler, E. J., Walaas, S. I. & Greengard, P. Science 225, 1357–1364 (1984).

    ADS  CAS  Article  Google Scholar 

  28. Paradiso, M. A., Bear, M. F. & Daniels, J. D. Expl Brain Res. 51, 413–422 (1983).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bear, M., Singer, W. Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature 320, 172–176 (1986). https://doi.org/10.1038/320172a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/320172a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing