Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stable transformation of maize after gene transfer by electroporation

Abstract

The graminaceous monocots, including the economically important cereals, seem to be refractory to infection by Agrobacterium tumefaciens1, a natural gene transfer system that has been successfully exploited for transferring foreign genes into higher plants2–4. Therefore, direct transfer techniques that are potentially applicable to all plant species have been developed using a few dicot5–8 and monocot8–10 species as model systems. One of these techniques, electroporation, uses electrical pulses of high field strength to permeabilize cell membranes11 reversibly so as to facilitate the transfer of DNA into cells8,12,13. Electroporation-mediated gene transfer has resulted in stably transformed animal cells12,13 and transient gene expression in monocot and dicot plant cells8. Here we report that electroporation-mediated DNA transfer of a chimaeric gene encoding neomycin phosphotransferase results in stably transformed maize cells that are resistant to kanamycin.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    De Cleene, M. & De Ley, J. Bot. Rev. 42, 389–466 (1976).

    Article  Google Scholar 

  2. 2

    Caplan, A. et al. Science 222, 815–821 (1983).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Fraley, R. T. et al. Proc. natn. Acad. Sci. U.S.A. 80, 4803–4807 (1983).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Zambryski, P., Herrera-Estrella, L., De Block, M., Van Montagu, M. & Schell, J. in Genetic Engineering Vol 6 (eds Hollaender, A. & Setlow, J.) 253–278 (Plenum, New York, 1984).

    Book  Google Scholar 

  5. 5

    Krens, F. H., Molendijk, L., Wullems, G. J. & Schilperoort, R. A. Nature 296, 72–74 (1982).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Hain, R. et al. Molec. gen. Genet. 199, 161–168 (1985).

    CAS  Article  Google Scholar 

  7. 7

    Paszkowski, J. et al. EMBO J. 3, 2717–2722 (1984).

    CAS  Article  Google Scholar 

  8. 8

    Fromm, M., Taylor, L. P. & Walbot, V. Proc. natn. Acad. Sci. U.S.A. 82, 5824–5828 (1985).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Lörz, H., Baker, B. & Schell, J. Molec. gen. Genet. 199, 178–182 (1985).

    Article  Google Scholar 

  10. 10

    Potrykus, I. et al. Molec. gen. Genet. 199, 183–188 (1985).

    CAS  Article  Google Scholar 

  11. 11

    Zimmerman, U. & Vienken, J. J. Membrane Biol. 67, 165–182 (1982).

    Article  Google Scholar 

  12. 12

    Potter, J., Weir, L. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 81, 7161–7165 (1984).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Neumann, E., Schaefer-Ridder, M., Wang, Y. & Hofschneider, P.H. EMBO J. 1, 841–845 (1982).

    CAS  Article  Google Scholar 

  14. 14

    Beck, E., Ludwig, G., Auerswald, E. A., Reiss, B. & Schaller, H. Gene 19, 327–336 (1982).

    CAS  Article  Google Scholar 

  15. 15

    Southern, P. J. & Berg, P. J. molec. appl. Genet. 1, 327–341 (1982).

    CAS  Google Scholar 

  16. 16

    Herrera-Estrella, L. et al. EMBO J. 2, 987–995 (1983).

    CAS  Article  Google Scholar 

  17. 17

    Bevan, M. W., Flavell, R. B. & Chilton, M.-D. Nature 304, 184–187 (1983).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Hohn, T., Richards, K. & Lebeurier, G. Curr. Topics Microbiol. Immun. 96, 193–236 (1982).

    CAS  Google Scholar 

  19. 19

    Bevan, M., Barnes, W. M. & Chilton, M.-D. Nucleic Acids Res. 11, 369–385 (1983).

    CAS  Article  Google Scholar 

  20. 20

    Sheridan, W. F. J. Cell Biol. 67, 396a (1975).

    Google Scholar 

  21. 21

    Chourey, P. S. & Zurawski, D. B. Theor. appl. Genet. 59, 341–344 (1981).

    CAS  Article  Google Scholar 

  22. 22

    Murashige, T. & Skoog, F. Physiol. Pl. 15, 473–497 (1962).

    CAS  Article  Google Scholar 

  23. 23

    Reiss, B., Sprengel, R., Will, H. & Schaller, H. Gene 30, 211–218 (1984).

    CAS  Article  Google Scholar 

  24. 24

    Schreier, P. H., Seftor, E. A., Schell, J. & Bohnert, H. J. EMBO J. 4, 25–32 (1985).

    CAS  Article  Google Scholar 

  25. 25

    Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    CAS  Article  Google Scholar 

  26. 26

    Feinberg, A. P. & Vogelstein, B. Analyt. Biochem. 132, 6–13 (1983).

    CAS  Article  Google Scholar 

  27. 27

    Federoff, N. V., Furtek, D. B. & Nelson, O. E. Proc. natn. Acad. Sci. U.S.A. 81, 3825–3829 (1984).

    ADS  Article  Google Scholar 

  28. 28

    Freeling, M., Cheng, D., S.-K. & Alleman, M. Devl. Genet. 3, 179–196 (1982).

    CAS  Article  Google Scholar 

  29. 29

    Hooykass-Van Slogteren, G. M. S., Hooykaas, P. J. J. & Schilperoort, R. A. Nature 311, 763–764 (1984).

    ADS  Article  Google Scholar 

  30. 30

    Hernalsteens, J.-P., Thia-Toony, L., Schell, J. & Montagu, M. EMBO J. 3, 3039–3041 (1984).

    CAS  Article  Google Scholar 

  31. 31

    Vieira, J. & Messing, J. Gene 19, 259–268 (1982).

    CAS  Article  Google Scholar 

  32. 32

    Gardner, R. C. et al. Nucleic Acids Res. 9, 2871–2887 (1981).

    CAS  Article  Google Scholar 

  33. 33

    Rivin, C. J., Cullis, C. A. & Walbot, V. Genetics (in the press).

  34. 34

    Shillito, R. D., Saul, M. W., Paszkowski, J., Müller, M. & Potrykus, I. Bio/Technology 3, 1099–1103 (1985).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fromm, M., Taylor, L. & Walbot, V. Stable transformation of maize after gene transfer by electroporation. Nature 319, 791–793 (1986). https://doi.org/10.1038/319791a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing