Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of the tetramerization domain of the Shaker potassium channel

Abstract

Voltage-dependent, ion-selective channels such as Na+, Ca2+ and K+ channel proteins function as tetrameric assemblies of identical or similar subunits1,2,3,4. The clustering of four subunits is thought to create an aqueous pore5,6 centred at the four-fold symmetry axis. The highly conserved, amino-terminal cytoplasmic domain (130 amino acids) immediately preceding the first putative transmembrane helix S1 is designated T1. It is known to confer specificity for tetramer formation7,8, so the heteromeric assembly of K+-channel subunits is an important mechanism for the observed channel diversity9,10,11. We have determined the crystal structure of the T1 domain of a Shaker potassium channel at 1.55 Å resolution. The structure reveals that four identical subunits are arranged in a four-fold symmetry surrounding a centrally located pore about 20 Å in length. Subfamily-specific assembly is provided primarily by polar interactions encoded in a conserved set of amino acids at its tetramerization interface. Most highly conserved amino acids in the T1 domain of all known potassium channels are found in the core of the protein, indicating a common structural framework for the tetramer assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T1 monomer.
Figure 2: T1 tetramer a, Stereo side-view of the T1 tetramer.
Figure 3: T1 side chains and views of layers 1, 2 and 3.

Similar content being viewed by others

References

  1. Noda, M. et al. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312, 121–127 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Tanabe, T. et al. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328, 313– 318 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Papazian, D. M., Schwarz, T. L., Tempel, B. L., Jan, Y. N. & Jan, Y. L. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene form Drosophila. Science 237, 749–753 ( 1987).

    Article  ADS  CAS  Google Scholar 

  4. MacKinnon, R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350, 232– 235 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Li, M., Unwin, N., Stauffer, K. A., Jan, L. Y. & Jan, Y. N. Images of purified Shaker potassium channels. Curr. Biol. 4, 110– 115 (1994).

    Article  CAS  Google Scholar 

  6. Miller, C. 1990: Annus mirabilis of potassium channels. Science 252, 1092–1095 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Shen, N. V., Chen, X., Boyer, M. M. & Pfaffinger, P. J. Deletion analysis of K+ channel assembly. Neuron 11, 67–76 (1993).

    Article  CAS  Google Scholar 

  8. Li, M., Jan, Y. N. & Jan, L. Y. Specification of subunit assembly by the hydrophilic amino-terminal domain of the Shaker potassium channel. Science 257, 1225–1230 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Schwarz, T. L., Tempel, B. L., Papazian, D. M., Jan, Y. N. & Jan, L. Y. Multiple potassium-channel components are produced by alternative splicing at the Shaker locus in Drosophila . Nature 331, 137–142 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Wei, A. et al. K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse. Science 248, 599–603 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Stühmer, W. et al. Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J. 8, 3235–3244 (1989).

    Article  Google Scholar 

  12. Holm, L. & Sander, C. Protein structure comparison by alignments of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  13. Murzin, A. G., Brenner, S. E., Hubbard, S. T. & Chothia, C. “SCOP”: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995).

    CAS  PubMed  Google Scholar 

  14. Hol, W. G., van Duijnen, P. T. & Berendsen, H. J. The alpha-helix dipole and the properties of proteins. Nature 273, 443–446 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Hoshi, T., Zagotta, W. N. & Aldrich, R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533– 538 (1990).

    Article  ADS  CAS  Google Scholar 

  16. MacKinnon, R., Aldrich, R. W. & Lee, A. W. Functional stoichiometry of Shaker potassium channel inactivation. Science 262, 757– 759 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Foster, C. D., Chung, S., Zagotta, W. N., Aldrich, R. W. & Levitan, I. B. Apeptide derived from the ShakerB K+ channel produces short and long blocks of reconstituted Ca2+-dependent K+ channels. Neuron 9, 229–236 ( 1992).

    Article  CAS  Google Scholar 

  18. Toro, L., Stefani, E. & Latorre, R. Internal blockade of a Ca2+-activated K+ channel by ShakerB inactivating “ball” peptide. Neuron 9, 237–245 (1992).

    Article  CAS  Google Scholar 

  19. Antz, C. et al. NMR structure of inactivation gates from mammalian voltage-dependent potassium channels. Nature 385, 272– 274 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Isacoff, E. Y., Jan, Y. N. & Jan, L. Y. Putative receptor for the cytoplasmic inactivation gate in the Shaker K+ channel. Nature 353 , 86–90 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Liu, T., Holmgren, M., Jurman, M. E. & Yellen, G. Gated access to the pore of a voltage-dependent K+ channel. Neuron 19, 175–184 (1997).

    Article  Google Scholar 

  22. Mannuzzu, L. M., Moronne, M. M. & Isacoff, E. Y. Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271, 213–216 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Otwinowski, Z. in Data Collection and Processing (eds Swayer, L., Isaac, N. & Bailey, S.) 56–62 (SERC Daresbury Laboratory, Warrington, UK, 1993).

    Google Scholar 

  24. Hendrickson, W. A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51– 58 (1991).

    Article  ADS  CAS  Google Scholar 

  25. Collaborative Computational Project, Number4. The CCP4 Suite: Programs for Crystallography. Acta Crystallogr. D 50, 670– 673 (1994).

    Google Scholar 

  26. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjelgard, M. W. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  27. Brunger, A. T. X-PLOR Version 3.8(Dept of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 1996).

  28. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 ( 1994).

    Article  Google Scholar 

  29. Evans, S. V. SETOR: hardware lighted three-dimensional solid model representations of macromolecules. J. Mol. Graph. 11, 134– 138 (1993).

    Article  CAS  Google Scholar 

  30. Nicholls, A., Sharp, K. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struc. Funct. Genet. 11, 281–296 ( 1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Bellamy at beamline 1-5 at SSRL for his help; W. Yang, J. Greenwald and R. Robinson for data collection; P. Voelker for analytical centrifuging; A. Craig for mass spectroscopy; W.Fischer and C. Park for amino-acid sequencing; and G. Louie, A. Bilwes, K. Bixby, J. Noel, F. Crick and L. Orgel for discussions and comments on the manuscript. A.K. acknowledges fellowships from the Hoffman Foundation and the American Heart Association. SSRL is funded by the Department of Energy, Office of Basic Energy Science. This work was supported by grants from the NIH (P.J.P. and S.C.) and the Council for Tobacco Research (S.C.). S.C. is a Neuroscience fellow of the E.A. & J. Klingenstein Fund. C.F.S. is a HHMI investigator.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreusch, A., Pfaffinger, P., Stevens, C. et al. Crystal structure of the tetramerization domain of the Shaker potassium channel. Nature 392, 945–948 (1998). https://doi.org/10.1038/31978

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/31978

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing