Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

NMR structure and mutagenesis of the FADD (Mort1) death-effector domain

Abstract

When activated, membrane-bound receptors for Fas and tumour-necrosis factor initiate programmed cell death by recruiting the death domain of the adaptor protein FADD1 (Mort1; ref. 2) to the membrane. FADD then activates caspase 8 (ref. 3) (also known as FLICE4 or MACH5) through an interaction between the death-effector domains of FADD and caspase 8. This ultimately leads to the apoptotic response. Death-effector domains and homologous protein modules known as caspase-recruitment domains6 have been found in several proteins1,2,3,4,5,6,7,8,9,10,11,12,13,14 and are important regulators of caspase (FLICE) activity and of apoptosis. Here we describe the solution structure of a soluble, biologically active mutant of the FADD death-effector domain. The structure consists of six antiparallel, amphipathic α-helices and resembles the overall fold of the death domains of Fas15 and p75 (ref. 16). Despite this structural similarity, mutations that inhibit protein–protein interactions involving the Fas death domain have no effect when introduced into the FADD death-effector domain. Instead, a hydrophobic region of the FADD death-effector domain that is not present in the death domains is vital for binding to FLICE and for apoptotic activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biological activity of FADD death-effector-domain mutants.
Figure 2: Structure of the F25Y mutant DED of FADD.
Figure 3: Comparison of death-effector and death domains.
Figure 4: Stereoview of the backbone (N, Cα, C′) of 20 superimposed NMR-derived structures of the inactive F25G FADD DED (black) overlain onto the averaged NMR structure of the active F25Y FADD DED (red).

Similar content being viewed by others

References

  1. Chinnaiyan, A. M., O'Rourke, K., Tewari, M. & Dixit, V. M. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505–512 (1995).

    Article  CAS  Google Scholar 

  2. Boldin, M. P. et al. Anovel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J. Biol. Chem. 270, 7795–7798 (1995).

    Article  CAS  Google Scholar 

  3. Alnemri, E. S. et al. Human ICE/CED-3 protease nomenclature. Cell 87, 171 (1996).

    Article  CAS  Google Scholar 

  4. Muzio, M. et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817–827 (1996).

    Article  CAS  Google Scholar 

  5. Boldin, M. P., Goncharov, T. M., Goltsev, Y. W. & Wallach, D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85, 803–815 (1996).

    Article  CAS  Google Scholar 

  6. Hofmann, K., Bucher, P. & Tschopp, J. The CARD domain: a new apoptotic signalling motif. Trends Biochem. Sci. 22, 155–156 (1997).

    Article  CAS  Google Scholar 

  7. Duan, H. & Dixit, V. M. RAIDD is a new ‘death’ adaptor molecule. Nature 385, 86–89 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Bertin, J. et al. Death effector domain-containing herpesvirus and poxvirus proteins inhibit both Fas- and TNFR1-induced apoptosis. Proc. Natl Acad. Sci. USA 94, 1172–1176 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Thome, M. et al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386, 517–521 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Hu, S., Vinchenz, C., Buller, M. & Dixit, V. M. Anovel family of viral death effector domain-containing molecules that inhibit both CD-95- and tumor necrosis factor receptor-1-induced apoptosis. J. Biol. Chem. 272, 9621–9624 (1997).

    Article  CAS  Google Scholar 

  11. Irmler, M. et al. Inhibition of death receptor signals by cellular FLIP. Nature 388, 190–195 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Shu, H. B., Halpin, D. R. & Goeddel, D. V. Casper is a FADD- and caspase-related inducer of apoptosis. Immunity 6, 751–763 (1997).

    Article  CAS  Google Scholar 

  13. Srinivasula, S. M. et al. FLAME-1, a novel FADD-like anti-apoptotic molecule that regulates Fas/TNFR1-induced apoptosis. J. Biol. Chem. 272, 18542–18545 (1997).

    Article  CAS  Google Scholar 

  14. Goltsev, Y. V. et al. CASH, a novel caspase homologue with death effector domains. J. Biol. Chem. 272, 19641–19644 (1997).

    Article  CAS  Google Scholar 

  15. Huang, B., Eberstadt, M., Olejniczak, E. T., Meadows, R. P. & Fesik, S. W. NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature 384, 638–641 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Liepinsh, E., Ilag, L. L., Otting, G. & Ibanez, C. F. NMR structure of the death domain of the p75 neurotrophin receptor. EMBO J. 16, 4999–5005 (1997).

    Article  CAS  Google Scholar 

  17. Eberstadt, M., Huang, B., Olejnizak, E. T. & Fesik, S. W. The lymphoproliferation mutation in Fas locally unfolds the Fas death domain. Nature Struct. Biol. 4, 983–986 (1997).

    Article  CAS  Google Scholar 

  18. Watanabe-Fukunaga, R., Brannan, C. I., Copeland, N. G., Jenkins, N. A. & Nagata, S. Lymphoproliferation disorder in mice explained by defects in fas antigen that mediates apoptosis. Nature 356, 314–317 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Tartaglia, L. A., Ayres, T. M., Wong, G. H. & Goeddel, D. V. Anovel domain within the 55 kd TNF receptor signals cell death. Cell 74, 845–853 (1993).

    Article  CAS  Google Scholar 

  20. Keane, M. M., Ettenberg, S. A., Lowrey, G. A., Russell, E. K. & Lipkowitz, S. Fas expression and function in normal and malignant breast cell lines. Cancer Res. 56, 4791–4798 (1996).

    CAS  PubMed  Google Scholar 

  21. Yamazaki, T., Lee, W., Arrowsmith, C. H., Muhandiram, D. R. & Kay, L. E. Asuite of triple resonance NMR experiments for the backbone assignement of 15N, 13C, 2H labeled proteins with high sensitivity. J. Am. Chem. Soc. 116, 11655–11666 (1994).

    Article  CAS  Google Scholar 

  22. Clore, G. M. & Gronenborn, A. M. Multidimensional heteronuclear nuclear magnetic resonance of proteins. Meth. Enzymol. 239, 349–363 (1994).

    Article  CAS  Google Scholar 

  23. Logan, T. M., Olejniczak, E. T., Xu, R. X. & Fesik, S. W. Ageneral method for assigning NMR spectra of denatured proteins using 3D HC(CO)NH-TOCSY triple resonance experiments. J. Biomol. NMR 3, 225–231 (1993).

    Article  CAS  Google Scholar 

  24. Neri, D., Szyperski, T., Otting, G., Senn, H. & Wüthrich, K. Stereospecific nuclear magnetic resonance assignments of the methyl groups of valien and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28, 7510–7516 (1989).

    Article  CAS  Google Scholar 

  25. Vuister, G. W. & Bax, A. Quantitative J correlation: a new approach for measuring homonuclear three-bond J(HNHα) coupling constants in 15N-enriched proteins. J. Am. Chem. Soc. 115, 7772–7777 (1993).

    Article  CAS  Google Scholar 

  26. Kuszewski, J., Nilges, M. & Brünger, A. T. Sampling and efficiency of metric matrix distance geometry: a novel partial metrization algorithm. J. Biomol. NMR 2, 33–56 (1992).

    Article  CAS  Google Scholar 

  27. Brünger, A. T. X-PLOR 3.2 Manual (Yale Univ. Press, New Haven, 1992).

    Google Scholar 

  28. Carson, M. J. Ribbon models of macromolecules. J. Mol. Graph. 5, 103–106 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The 750-MHz NMR data were acquired at the National Magnetic Resonance Facility at Madison, which is supported by NIH, NSF, and the University of Wisconsin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen W. Fesik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eberstadt, M., Huang, B., Chen, Z. et al. NMR structure and mutagenesis of the FADD (Mort1) death-effector domain. Nature 392, 941–945 (1998). https://doi.org/10.1038/31972

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/31972

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing