Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chemical effects of large impacts on the Earth's primitive atmosphere

Abstract

Intense bombardment of the moon and terrestrial planets ˜3.9–4.0 × 109 years ago1,2 could have caused the chemical reprocessing of the Earth's primitive atmosphere3. In particular, the shock heating and rapid quenching caused by the impact of large bodies into the atmosphere could produce molecules such as HCN and H2CO4 which are important precursors for the abiotic synthesis of complex organic molecules5–7. Here we model the production of HCN and H2CO by thermochemical equilibrium and chemical kinetic calculations of the composition of shocked air parcels for a wide range of temperatures, pressures and initial compositions. For atmospheres with C/O ≥1, our results suggest that bolide impacts cause HCN volume mixing ratios of approximately 10−3 to 10−5 in the impact region and global average ratios of 10−5 to 10−12. The corresponding H2CO mixing ratios in the impact region are 10−7 to 10−9; no-global mixing can occur, however, as H2CO is rapidly destroyed or rained out of the atmosphere within days to hours. Rainout to the oceans of 3–15% of the HCN produced can provide ˜(3–14) × 1011 mol HCN per year. This is somewhat larger than other predicted sources of HCN8 and H2CO9 on the primitive Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tera, F., Papanastassiou, D. A. & Wasserburg, G. J. Earth planet. Sci. Lett. 22, 1–21 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Wetherill, G. W. Proc. 6th lunar Sci. Conf. 1539–1561 (1975).

  3. Hochstim, A. R. Proc. natn. Acad. Sci. U.S.A. 50, 200–208 (1963); in Chemical Evolution and the Origin of Life (eds Buvet, R. & Ponnamperuma, C.) 96–113 (North-Holland, New York, 1971).

    Google Scholar 

  4. Fegley, B., Hartman, H. & Prinn, R.G. EOS 63, 1018 (1982).

    Google Scholar 

  5. Oro, J. & Kimball, A. P. Archs biochem. Biophys. 94, 217–227 (1961).

    Article  CAS  Google Scholar 

  6. Cairns-Smith, A. G. Genetic Takeover and the Mineral Origins of Life, 21–31 (Cambridge University Press, 1982).

    Google Scholar 

  7. Abelson, P. H. Proc. natn. Acad. Sci. U.S.A. 1365–1372 (1966).

  8. Chameides, W. L. & Walker, J. C. G. Origins Life 11, 291–302 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Pinto, J. P., Gladstone, G. R. & Yung, Y. L. Science 210, 183–185 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Sarda, P. & Allegre, C. J. Earth planet. Sci. Lett. 72, 357–375 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Staudacher, Th. & Allegre, C. J. Earth planet. Sci. Lett. 60, 389–406 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans (Princeton University Press, 1984).

    Google Scholar 

  13. Holland, H. D. in Petrologic Studies: A Volume to Honor A. F. Buddington (ed Engel, A. E. J., et al.) 447–477 (Geological Society of America, Boulder, 1962).

    Google Scholar 

  14. Gerlach, T. M. & Nordlie, B. E. Am. J. Sci. 275, 353–410 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Lewis, J. S. & Prinn, R. G. Planets and their Atmospheres Origin and Evolution, 225–238 (Academic, New York, 1984).

    Google Scholar 

  16. Gordon, S. & McBride, B. J. NASA SP273 (1976).

  17. JANAF Thermochemical Tables (eds Stull, D. R. & Prophet, H.) NSRDS-NBS-37 (US Government Printing Office, Washington, 1971).

  18. Glushko, V. P. et al. (eds) Thermodynamic Properties of Individual Substances Vols 1–4 (High-Temperature Institute, Moscow, 1978–1982).

  19. Baulch, D. L., Drysdale, D. D., Duxbury, J. & Grant, S. J. Evaluated Kinetic Data for High Temperature Reactions Vol. 3, 337–361 (Butterworths, London, 1976).

    Google Scholar 

  20. Baulch, D. L., Duxbury, J., Grant, S. J., Montague, D. C. Evaluated Kinetic Data for High Temperature Reactions Vol. 4, 576–635 (J. phys. Chem. Ref. Data 10, Suppl. 1, 1981).

    Google Scholar 

  21. Prinn, R. G. & Barshay, S. S. Science 198, 1031–1034 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Chen, C. J. & McKenney, D. J. Can. J. Chem. 50, 992–998 (1972).

    Article  CAS  Google Scholar 

  23. Colket, M. B. Int. J. Chem. Kinet. 16, 353–369.

  24. Prinn, R. G. & Fegley, B. Jr. Astrophys. J. 249, 308–317 (1981).

    Article  ADS  CAS  Google Scholar 

  25. Szekely, A., Hanson, R. K. and Bowman, C. T. J. phys. Chem. 88, 666–668 (1984).

    Article  CAS  Google Scholar 

  26. Higashihara, T., Salto, K. & Murakami, I. J. phys. Chem. 87, 3707–3712 (1983).

    Article  CAS  Google Scholar 

  27. Bowman, C. T. Symp. 15th Int. Combust. Proc. 869–882 (Combustion Institute, Pittsburgh, 1974).

  28. Foley, H. M. & Ruderman, M. A. J. geophys. Res. 78, 4441–4450 (1973).

    Article  ADS  CAS  Google Scholar 

  29. Gilmore, F. R. J. geophys. Res. 80, 4553–4554 (1975).

    Article  ADS  CAS  Google Scholar 

  30. Goldsmith, P., Tuck, H. F., Foot, J. S., Simmons, E. L. & Newson, R. L. Nature 244, 545–551 (1973).

    Article  ADS  CAS  Google Scholar 

  31. Johnston, H., Whitten, G. & Birks, J. J. geophys. Res. 78, 6107–6135 (1973).

    Article  ADS  CAS  Google Scholar 

  32. Zeldovich, Ya.B. & Raizer, Ya. Physics of Shock Waves and High Temperature Phenomena Vol. 2, 566–571 (Academic, New York, 1967).

    Google Scholar 

  33. Chameides, W. L. Nature 277, 123–125 (1977).

    Article  ADS  Google Scholar 

  34. Lewis, J. S., Watkins, G. H., Hartman, H. & Prinn, R. G. Geol. Soc. Am. Spec. Pap. 190, 215–221 (1982).

    CAS  Google Scholar 

  35. Park, C. Acta astronautica 5, 523–542 (1978).

    Article  ADS  CAS  Google Scholar 

  36. Cicerone, R. J. & Zellner, R. J. geophys. Res. 88, 10, 689–10, 696 (1983).

  37. Giorgi, F. & Chameides, W. L. J. geophys. Res. 90, 7872–7880 (1985).

    Article  ADS  CAS  Google Scholar 

  38. Lowe, D. C. & Schmidt, U. J. geophys. Res. 88, 10, 844–10, 858 (1983).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fegley, B., Prinn, R., Hartman, H. et al. Chemical effects of large impacts on the Earth's primitive atmosphere. Nature 319, 305–308 (1986). https://doi.org/10.1038/319305a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/319305a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing