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Growth by cannibalization 
A new calculation of the process of condensation suggests that more attention should be paid to the 
correlations between neighbouring droplets. 

HERE is as neat a piece of classical physics 
as one could hope to find. The problem is 
the apparently simple one of predicting 
the behaviour of an assembly of droplets 
such as might be found in a condensing 
cloud in the atmosphere. Large drops will 
grow at the expense of smaller drops. The 
classical problem, of obvious importance 
in meteorology, is to know how the size 
distribution changes with time. It is now 
thirty years since the essentials of the 
problem were stated and solved by two 
Soviet physicists, I.M. Lifshitz and V.V. 
Slyozov. The nub of their result is that, 
where large droplets grow at the expense 
of small, the average radius increases with 
time (t) in proportion to the cube root, t113

• 

This cube-root dependence on time of 
the average radius of the droplets in a 
cloud seems to be borne out by observa
tion, not merely of the sizes of droplets in 
an atmospheric water cloud but in other 
comparable situations, the radii of parti
cles crystallizing from a molten metal, for 
example. But the other features of the size 
distribution predicted by Lifshitz and 
Slyozov are not nearly as well established. 
And now Dr M. Marder from the Uni
versity of California at Santa Barbara has 
been able to correct the older arguments 
in a particularly interesting way (Phys. 
Rev. Lett. 55, 2953; 1985). 

Because the vapour pressure of a small 
droplet varies inversely with its radius, 
small droplets are unstable, and will 
evaporate rather than grow unless the 
vapour pressure in the immediate en
vironment is greater than that correspond
ing to equilibrium. This is why cloud 
formation requires some mechanism of 
nucleation, and why the environment of a 
cloud usually manifests a degree of super
saturation with respect to the equilibrium 
vapour pressure of bulk water at the 
temperature of cloud formation. But if 
those conditions are met, it also follows 
that large droplets will grow at the ex
pense of smaller droplets. 

The practical need is to derive quantita
tive estimates of the preferential growth of 
larger particles. The process is dominated 
by diffusion; a shrinking small drop will 
not be able to continue shrinking if evapo
rated water vapour accumulates near the 
drop, increasing the local vapour pressure 
above equilibrium value. Similarly, a 
large drop will not be able to continue 
growing if it should so denude the local 
environment of water that the vapour 
pressure is less than the equilibrium value. 

So the rate of growth of a particular dro
plet may be determined by its immediate 
past history (which determines whether 
the immediate neighbourhood is enriched 
by or depleted of water vapour), as well as 
by the behaviour of nearby droplets 
which, by shrinking or growing, may add 
or subtract water vapour from the en
vironment. 

The problem is therefore one in kinetic 
theory, but with the proviso that equilib
rium does not apply. The first successful 
treatment seems to have been given by the 
two Soviet physicists. Their argument may 
be summarized as follows. The simplest 
case is that in which the medium in which 
the droplets grow is so massively super
saturated that neighbouring drops have no 
influence on each other and even the 
effects of surface tension can be neg
lected. Then, the rate of growth of a par
ticular drop will be determined by the rate 
at which water vapour can diffuse to reach 
its surface. In terms of the radius, R, the 
rate of change will be the simple function 
(D!R). Qo, where Dis the molecular diffu
sion constant, Qo is the mixing ratio of the 
water vapour expressed as the ratio of the 
volume of the water if it were totally con
densed to that of the total space occupied 
and R enters the equation reciprocally be
cause of the geometry of diffusion onto a 
small supposedly spherical droplet 
through the surrounding medium. 

A missing ingredient from this extreme 
approximation has the effect of subtract
ing from Qo an amount d/R, where dis 
some quantity proportional to surface ten
sion and the reciprocal of R, appearing as 
a factor. This accords physically with the 
circumstance that the effect of surface ten
sion is to reduce the rate of growth of 
drops, the smaller the droplet the more 
markedly. 

The other obviously missing ingredient 
is some allowance for the extent to which 
one drop influences its neighbours. First, 
it is necessary to adjust Qo (by subtrac
tion), the volume fraction of the water 
already condensed, and then to allow for 
the way in which the growth of a particular 
droplet is affected by all the behaviour of 
all the other droplets in the system, by a 
separate adjustment representing the in
fluence of each of them. Shrinking dro
plets will add to the availability of material 
elsewhere, which explains why the rate of 
change enters linearly in each adjusting 
term, adding to the availability of material 
(and thus Qo when it is negative). The 

radius of every other drop, or rather its 
square, also enters, but the distant effect 
of each droplet is attenuated in the same 
way as diffusive effects are invariably 
attenuated by gaussian factors in respect 
of both distance and time; in short, the 
growth of a particular droplet will be more 
affected by the recent behaviour of other 
nearby droplets than by the remote (in 
time) behaviour of distant droplets. The 
result is a horrid set of nonlinear interlock
ing equations that nobody would think of 
solving directly, not merely because solu
tion would be impossible but because the 
problem is in any case statistical. 

Lifshitz and Slyozov dealt with the 
problem by averaging, on the specific 
assumption that drops of different random 
sizes are randomly distributed through the 
available space. Apart from their conclu
sion about the average size r, they also 
concluded that the size distribution of 
growing droplets, strictly a function both 
of radius and of time, should ultimately be 
given by a calculable function only of the 
ratio Rlr, which of course involves the 
time as a variable because the average 
radius r grows with time. Marder's point is 
that while the cube-root dependence of r 
has been well confirmed by observation, 
the size distribution of particles that grow 
partly by the remote cannibalization of 
each other usually turns out to be much 
broader than that calculated. 

What can have gone wrong? Marder's 
answer is simple; Lifshitz and Slyozov had 
no business to determine the average be
haviour of a droplet by assuming that dro
plets of different sizes may be randomly 
distributed. On the contrary, Marder 
says, precisely because a shrinking drop 
will add preferentially to the growth of its 
immediate neighbours rather than more 
distant drops, there will be a tendency for 
large and small drops to be paired 
together statistically. By good fortune, the 
more exact correlation is calculable. The 
proof of the conclusion is that the calcu
lated size distribution agrees well with 
data previously gathered for the particle
size distribution in slowly solidifying 
alloys ofFe-Si-Ti and Ni-Si, both of which 
are broader than predicted by Lifshitz and 
Slyozov. More detailed calculations of the 
evolution of a system of mutually canniba
lizing particles can pass through a stage in 
which there is a distinctly bimodal dis
tribution of size, with one group of smal
lish particles and another which is much 
larger. John Maddox 
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