Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Archaean magmatic sulphate

Abstract

The absence of redbeds, the occurrence of readily oxidizable minerals in placers, and the rarity of sulphate minerals are some features which suggest generally reduced conditions on the Earth's surface during Archaean time1. Supporting this conjecture are δ34S values near 0‰ for sulphides of sedimentary rocks2–4 and massive sulphide deposits5, since isotopic fractionation requires oxidation–reduction reactions. The flux of oxidized species during the Archaean produced by fixation of organic carbon was, however, comparable with modern levels6, but was largely consumed by reactions with a large supply of reduced mantle material4,7. Notable occurrences of Archaean sulphate are 3,400-Myr stratiform barites in Australia8,9, South Africa10 and India11, with δ34S +4‰ (refs 8–10) which are believed to have formed by bacterial oxidation of primary (0‰) sulphide10. Consideration of the Archaean sulphur cycle has focused on sulphate of this origin. We draw attention here to sulphate of different isotopic composition, +8 to +14‰, of magmatic origin, that contributed to the total flux of oxidized species during the Archaean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cloud, P. E. Science 160, 729–736 (1968).

    ADS  CAS  PubMed  Google Scholar 

  2. Cameron, E. M. & Garrels, R. M. Chem. Geol. 28, 181–197 (1980).

    ADS  CAS  Google Scholar 

  3. Hattori, K., Campbell, F. A. & Krouse, H. R. Nature 302, 323–326 (1983).

    ADS  CAS  Google Scholar 

  4. Cameron, E. M. Nature 296, 145–148 (1982).

    ADS  CAS  Google Scholar 

  5. Sangster, D. F. Geol. Ass. Can. Spec. Pap. 20, 723–739 (1980).

    CAS  Google Scholar 

  6. Junge, C. E., Schidlowski, M., Eichman, R. & Pietrek, H. J. geophys. Res. 80, 4542–4552 (1975).

    ADS  CAS  Google Scholar 

  7. Veizer, J., Compston, W., Hoefs, J. & Nielsen, H. Naturwissenschaften 69, 173–180 (1982).

    ADS  CAS  Google Scholar 

  8. Perry, E. C. Jr., Hickman, A. H. & Barnes, I. L. Geol. Soc. Am. Abst. Prog. 1226 (1975).

  9. Lambert, I. B., Donnelly, T. H., Dunlop, J. S. R. & Groves, D. I. Nature 276, 808–810 (1978).

    ADS  CAS  Google Scholar 

  10. Perry, E. C. Monster, J. & Reimer, T. Science 171, 1015–1016 (1971).

    ADS  CAS  PubMed  Google Scholar 

  11. Radhakrishna, B. P. & Vasudev, V. N. J. geol. Soc. Ind. 18, 525–541 (1977).

    Google Scholar 

  12. Hart, S. R. & Brooks, C. Contr. Miner. Petrol. 61, 109–128 (1977).

    ADS  CAS  Google Scholar 

  13. Roddick, J. C. Geochim. cosmochim Acta 48, 1305–1318 (1984).

    ADS  CAS  Google Scholar 

  14. Fauer, G. & Powell, J. L. Strontium Isotope Geology (Springer, New York, 1972).

    Google Scholar 

  15. Turek, A., Smith, T. E. & Huang, C. H. Can. J. Earth Sci. 18, 323–329 (1981).

    ADS  CAS  Google Scholar 

  16. Glikson, A. Y. Earth Sci. Rev. 15, 1–73 (1979).

    ADS  CAS  Google Scholar 

  17. Veizer, J. & Compston, W. Geochim. cosmochim. Acta 40, 905–914 (1976).

    ADS  CAS  Google Scholar 

  18. Cameron, E. M., Hattori, K. & Sullivan, R. W. Geol. Surv. Can. Paper 84-8 3 (1984).

  19. Mason, R. O. Geol. Surv. Can. Paper 85-8 6 (1985).

  20. Cormier, M., Gauthier, A. & Muir, J. E. Can. Inst. Min. Metal. Spec. 34, 393–411 (1984).

    CAS  Google Scholar 

  21. Thomson, J. E. et al. Ont. Dept. Min. A. Rep. 57, part 5, (1950).

  22. Percival, J. A. & Krogh, T. E. Can. J. Earth Sci. 20, 830–843 (1983).

    ADS  CAS  Google Scholar 

  23. Morrison, E. R. Rhodesia Geol. Surv. Miner. Resourc. Ser. 15 (1970).

  24. Cameron, E. M. & Hattori, K. Geochim. cosmochim. Acta 49, 2041–2051 (1985).

    ADS  CAS  Google Scholar 

  25. Hattori, K., Cameron, E. M. & Smith, R. Abstr. geol. Ass. Can. 10, A–25 (1985).

    Google Scholar 

  26. Katsura, T. & Nagashima, S. Geochim. cosmochim. Acta 38, 517–531 (1974).

    ADS  CAS  Google Scholar 

  27. Moore, J. G. & Fabbi, B. P. Contr. Miner. Petrol. 33, 118–127 (1971).

    ADS  CAS  Google Scholar 

  28. Sakai, H., DesMarais, D. J., Ueda, A. & Moore, J. G. Geochim. cosmochim. Acta 48, 2433–2441 (1984).

    ADS  CAS  PubMed  Google Scholar 

  29. Sakai, H., Casadevall, T. J. & Moore, J. G. Geochim. cosmochim. Acta 46, 729–738 (1982).

    ADS  CAS  Google Scholar 

  30. Anderson, A. T. Rev. Geophys. Space Phys. 13, 37–55 (1974).

    ADS  Google Scholar 

  31. Kyser, T. K. & O'Neil, J. R. Geochim. cosmochim. Acta 48, 2123–2133 (1984).

    ADS  CAS  Google Scholar 

  32. Ueda, A. & Sakai, H. Geochim. cosmochim. Acta 48, 1837–1848 (1984).

    ADS  CAS  Google Scholar 

  33. Burnham, C. W. in Geochemistry of Hydrothermal Ore Deposits 2nd edn (ed. Barnes, H. L.) 71–136 (Wiley, New York, 1979).

    Google Scholar 

  34. Heberlein, D. R. & Godwin, C. I. Econ. Geol. 79, 902–918 (1984).

    CAS  Google Scholar 

  35. Beane, R. E. & Titley, S R. Econ. Geol. 75th Ann. Vol. 235–269 (1981).

  36. Miyoshi, T., Sakai, H. & Chiba, H. Geochem. J. 18, 75–84 (1984).

    ADS  CAS  Google Scholar 

  37. Field, C. W. & Gustafson, L. B. Econ. Geol. 71, 1533–1548 (1976).

    CAS  Google Scholar 

  38. Muir, T. L. Ont. geol. Surv. Rep. No. 217 (1982).

  39. Holland, H. D. The Chemical Evolution of the Atmosphere and the Ocean (Princeton University Press, 1984).

    Google Scholar 

  40. Crisp, J. A. J. Volcan. Geotherm. Res. 20, 177–211 (1984).

    ADS  Google Scholar 

  41. Berresheim, H. & Jaeschke, W. J. geophys. Res. 88, 3732–3740 (1983).

    ADS  CAS  Google Scholar 

  42. Richter, F. M. Earth planet. Sci. Lett. 73, 350–360 (1985).

    ADS  CAS  Google Scholar 

  43. Holser, W. T. & Kaplan, I. R. Chem. Geol. 1, 93–135 (1966).

    ADS  CAS  Google Scholar 

  44. Turek, A., Smith, P. E. & Van Schmus, W. R. Can. J. Earth Sci. 21, 457–464 (1984).

    ADS  CAS  Google Scholar 

  45. Bickle, M. J. Earth planet. Sci. Lett. 40, 301–315 (1978).

    ADS  Google Scholar 

  46. Hickman, A. H. Geol. Surv. A. Rep. 1972, 57–60 (1973).

  47. Kerrich, R. Can. Inst. Min. Met. Spec. Vol. 27 (1983).

  48. Dyer, W. S. Ont. Dep. Mines 44th A. Rep. (1935).

  49. Kamineni, D. C. Chem. Geol. 39, 263–272 (1983).

    ADS  CAS  Google Scholar 

  50. Kamineni, D. C. & Stone, D. C. Contr. Miner. Petrol. 83, 237–246 (1983).

    ADS  CAS  Google Scholar 

  51. Nikic, Z., Baadsgaard, H., Folinsbee, R. E., Krupicka, J., Leech, A. P. & Sasaki, A. Geol. Soc. Am. Spec. Pap. 182, 169–175 (1980).

    CAS  Google Scholar 

  52. Hickman, A. H. Geol. surv. West Austral. Bull. 127 (1983).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hattori, K., Cameron, E. Archaean magmatic sulphate. Nature 319, 45–47 (1986). https://doi.org/10.1038/319045a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/319045a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing