Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Charge separation in localized and delocalized electronic states in polymeric semiconductors

Abstract

Conjugated polymers such as poly(p-phenylene vinylene)s (PPVs) allow low-cost fabrication of thin semiconducting films by solution processing onto substrates. Several polymeric optoelectronic devices have been developed in recent years, including field-effect transistors1, light-emitting diodes2, photocells3,4 and lasers5. It is still not clear, however, whether the description of electronic excitations in these materials is most appropriately formulated within a molecular or semiconductor (band-theory) picture. In the former case, excited states are localized and are described as excitons; in the latter they are delocalized and described as free electron–hole pairs. Here we report studies of the electronic states associated with optical excitations in the visible and ultraviolet range for the conjugated polymer poly(2-methoxy-5-(2′-ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV), by means of photocurrent measurements and quantum-chemical calculations. We find several photocurrent spectral features between 3 and 5 eV which are coupled with bands in the absorption spectrum. On modelling the excited states in this energy range, we have discovered an important feature that is likely to be general for materials composed of coupled molecular units: that mixing of delocalized conduction- and valence-band states with states localized on the molecular units produces a sequence of excited states in which positive and negative charges can be separated further at higher energies. In other words, these excited states facilitate charge separation, and provide a conceptual bridge between the molecular (localized) and semiconductor (delocalized) pictures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Short-circuit photocurrent spectra (solid line) and absorption spectra (dotted line) of different films.
Figure 3: INDO/SCI calculations for the 11-ring PPV model oligomer; the site labelling is shown at the top.
Figure 4: Scheme of molecular orbitals in poly(p-phenylene vinylene) with nodes at para-position and with nodes orthogona.

Similar content being viewed by others

References

  1. Garnier, F., Hajlaoui, R., Yassar, A. & Srivastava, P. All-polymer field-effect transistor realized by printing techniques. Science 265, 1684–1686 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Tessler, N., Denton, G. J. & Friend, R. H. Lasing from conjugated-polymer microcavities. Nature 382, 695–697 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Lee, C. H., Yu, G., Moses, D. & Heeger, A. J. Picosecond transient photoconductivity in poly(p-phenylenevinylene). Phys. Rev. B 49, 2396–2407 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Heun, S. et al. Conformational effects in poly(p-phenylene vinylene) revealed by low-temperature site-selective fluorescence. J. Phys.: Condens. Matter 5, 247–260 (1993).

    ADS  CAS  Google Scholar 

  8. Rauscher, U., Bässler, H., Bradley, D. D. C. & Hennecke, M. Exciton versus band description of the absorption and luminescence spectra in poly(para-phenylenevinylene). Phys. Rev. B 42, 9830–9836 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Brédas, J. L., Cornil, J. & Heeger, A. J. The exciton binding energy in luminescent conjugated polymers. Adv. Mater. 8, 447–452 (1996).

    Article  Google Scholar 

  10. Fromherz, P. & Rieger, B. Photoinduced electron transfer in DNA matrix from intercalated ethidium to condensed methylviologen. J. Am. Chem. Soc. 108, 5361–5362 (1986).

    Article  CAS  Google Scholar 

  11. Hall, D. B., Holmlin, R. E. & Barton, J. K. Oxidative DNA damage through long-range electron transfer. Nature 382, 731–735 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Pichler, K. et al. Optical spectroscopy of highly ordered poly(p-phenylene vinylene). J. Phys.: Condens. Matter. 5, 7155–7172 (1993).

    ADS  CAS  Google Scholar 

  13. Chandross, M. et al. Excitons in poly(para-phenylenevinylene). Phys. Rev. B 50, 14702–14705 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Tang, C. W. & Albrecht, A. C. Photovoltaic effects of metal-chlorophyll-metal sandwich cells. J. Chem. Phys. 62, 2139–2149 (1974).

    Article  ADS  Google Scholar 

  15. Marks, R. N., Halls, J. J. M., Bradley, D. D. C., Friend, R. H. & Holmes, A. B. The photovoltaic response in poly(p-phenylene vinylene) thin-film devices. J. Phys.: Condens. Matter 6, 1379–1394 (1994).

    ADS  CAS  Google Scholar 

  16. Harrison, M. G., Grüner, J. & Spencer, G. C. W. Analysis of the photocurrent action spectra of MEH-PPV polymer photodiodes. Phys. Rev. B 55, 7831–7849 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Kraus, A., Gügel, A., Belik, P., Walter, M. & Müllen, K. Covalent attachment of various substituents in closest proximity ot the C60-core: A broad synthetic approach to stable fullerene derivatives. Tetrahedron 51, 9927–9940 (1996).

    Article  Google Scholar 

  18. Cornil, J., Beljonne, D., Friend, R. H. & Brédas, J. L. Optical absorptions in poly(para-phenylene vinylene) and poly(2.5-dimethoxy-1,4-para-phenylene vinylene) oligomers. Chem. Phys. Lett. 223, 82–88 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Gartstein, Y. N., Rice, M. J. & Conwell, E. M. Electron–hole interaction effects in the absorption-spectra of phenylene-based conjugated polymers. Phys. Rev. B 52, 1683–1691 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Chandross, M. et al. Optical absorption in the substituted phenylene-based conjugated polymers: Theory and experiment. Phys. Rev. B 55, 1486–1496 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Kersting, R. et al. Femtosecond energy relaxation in π-conjugated polymers. Phys. Rev. Lett. 70, 3820–3823 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Hayes, G. H., Samuel, I. D. W. & Phillips, R. T. Exciton dynamics in electroluminescent polymers studied by femtosecond time-resolved photoluminescence spectroscopy. Phys. Rev. B 52, R11569–R11572 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Harrison, N. T., Hayes, G. R., Phillips, R. T. & Friend, R. H. Singlet intrachain exciton generation and decay in poly(p-phenylenevinylene). Phys. Rev. Lett. 77, 1881–1884 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Rothberg, L. J. et al. Intrinsic and extrinsic constrains on phenylenevinylene polymer electroluminescence. Synth. Met. 78, 231–236 (1996).

    Article  CAS  Google Scholar 

  25. Barth, S., Bässler, H., Rost, H. & Hörhold, H. H. Extrinsic and intrinsic dc photoconductivity in a conjugated polymer. Phys. Rev. B 56, 3844–3851 (1997).

    Article  ADS  CAS  Google Scholar 

  26. Pope, M. & Swenberg, C. E. Electron Processes in Organic Crystals (Clarendon, Oxford, 1982).

    Google Scholar 

  27. Gutmann, F. & Lyons, L. E. Organic Semiconductors (Wiley, New York, 1967).

    Google Scholar 

  28. Salaneck, W. R., Stafström, S. & Brédas, J.-L. Conjugated Polymer Surfaces and Interfaces (Cambridge Univ. Press, 1996).

    Book  Google Scholar 

Download references

Acknowledgements

We thank M. Harrison, S. Graham, P. Hamer and S. C. Moratti for discussions, and J.J. M. Halls for assistance with the UV photovoltaics equipment and for discussions. One of us (A.K.) thanks Wolfson College and Peterhouse in Cambridge for financial support. The Cambridge–Mons collaboration is supported by the European Commission (TMR Network ‘SELOA’ and ESPRIT project ‘LEDFOS’). Work in Mons is partly supported by the Belgian Prime Minister Services for Scientific, Technical, and Cultural Affairs (IAP in Supramolecular Chemistry and Catalysis), FNRS-FRFC, and an IBM Academic Joint Study. D.B. is Chargé de Recherches FNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kraus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köhler, A., dos Santos, D., Beljonne, D. et al. Charge separation in localized and delocalized electronic states in polymeric semiconductors. Nature 392, 903–906 (1998). https://doi.org/10.1038/31901

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/31901

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing