Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cμ-containing transcripts initiate heterogeneously within the IgH enhancer region and contain a novel 5′-nontranslatable exon

Abstract

Transcriptional competence of the immunoglobulin heavy-chain locus (IgH) is established at an early stage of lymphoid cell development, leading to the appearance of RNA components, previously called Cμ RNA1 or sterile-μ RNA2, which contain constant-region sequences but lack variable-region sequences. These components are of two types: those which initiate in the D region of alleles that have undergone DJH (diversity–joining region) rearrangement (Dμ transcripts) and those which initiate within the JH–Cμ intron (hereafter termed Iμ transcripts)3,4. In pre-B and early B cells, Dμ and lμ transcripts are nearly as abundant as the messenger RNA encoding μ heavy chain2,3,5. The Dμ transcripts are spliced into RNAs containing D, JH and Cμ sequences, and in some, but not all, cases these RNAs are translated into Dμ proteins4. To establish whether the Iμ transcripts have any translational potential and to elucidate the structure of their promoter region, we have determined their transcription initiation sites and their mode of splicing. As reported here, by using sequence analysis of cloned Iμ complementary DNAs, primer extension and S1, nuclease mapping, we have found that these transcripts have remarkable 5′ heterogeneity: ther e are more than five distinct start sites spanning a region of 44 nucleotides that is located downstream of an octanucleotide found in all variable-region promoters. Such imprecise initiation may result from the lack of a well-defined T A T AA motif and the unusual proximity of the octanucleotide to the enhancer region. Approximately 700 nucleotides downstream from these initiation sites, a cryptic splice site is used to create a nontranslatable exon (‘nontron’) which is joined to the Cμ1 domain. The properties of the nontron may be important for the mechanism of allelic exclusion.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kemp, D. J., Harris, A. W. & Adams, J.M. Proc. natn. Acad. Sci. U.S.A. 77, 7400–7404 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Alt, F. W., Rosenberg, N., Enea, V., Siden, E. & Baltimore, D. Molec. cell. Biol. 2, 386–400 (1982).

    Article  CAS  Google Scholar 

  3. Nelson, K. J., Haimovich, J. & Perry, R. P. Molec. cell. Biol. 3, 1317–1332 (1983).

    Article  CAS  Google Scholar 

  4. Reth, M. G. & Alt, F. W. Nature 312, 418–423 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Perry, R. P. & Kelley, D. E. Cell 18, 1333–1339 (1979).

    Article  CAS  Google Scholar 

  6. Banerji, J., Olson, L. & Schaffner, W. Cell 33, 729–740 (1983).

    Article  CAS  Google Scholar 

  7. Gillies, S. T., Morrison, S. L., Oi, V. T. & Tonegawa, S. Cell 33, 717–728 (1983).

    Article  CAS  Google Scholar 

  8. Parslow, T. G., Blair, D. L., Murphy, W. J. & Granner, D. K. Proc. natn. Acad. Sci. U.S.A. 81, 2650–2654 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Falkner, F. G. & Zachau, H. G. Nature 310, 71–74 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Bergman, Y., Rice, D., Grosschedl, R. & Baltimore, D. Proc. natn. Acad. Sci. U.S.A. 81, 7041–7045 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Ephrussi, A., Church, G. M., Tonegawa, S. & Gilbert, W. Science 227, 134–140 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Ghosh, P. K., Reddy, V. B., Swinscoe, J., Lebowitz, P. & Weissman, S. M. J. molec. Biol. 126, 813–846 (1978).

    Article  CAS  Google Scholar 

  13. Cowie, A., Tyndall, C. & Kamen, R. Nucleic Acids Res. 9, 6305–6322 (1981).

    Article  CAS  Google Scholar 

  14. Reynolds, G. A. et al. Cell 38, 275–285 (1984).

    Article  CAS  Google Scholar 

  15. Kelley, D. E., Coleclough, C. & Perry, R. P. Cell 29, 681–689 (1982).

    Article  CAS  Google Scholar 

  16. Wiedemann, L. M. & Perry, R. P. Molec. cell. Biol. 4, 2518–2528 (1984).

    Article  CAS  Google Scholar 

  17. Mount, S. M. Nucleic Acids Res. 10, 459–472 (1982).

    Article  CAS  Google Scholar 

  18. Kozak, M. Nucleic Acids Res. 12, 857–872 (1984).

    Article  CAS  Google Scholar 

  19. Walker, I. D. & Harris, A. W. Nature 288, 290–293 (1980).

    Article  ADS  CAS  Google Scholar 

  20. Mills, F. C., Fisher, L. M., Kuroda, R., Ford, A. M. & Gould, H. Nature 306, 809–812 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Alt, F. W., Enea, V., Bothwell, A. L. M. & Baltimore, D. Cell 21, 1–12 (1980).

    Article  CAS  Google Scholar 

  22. Coleclough, C., Herry, R. P., Karjalainen, K. & Weigert, M. Nature 290, 372–378 (1981).

    Article  ADS  CAS  Google Scholar 

  23. Hieter, P. A., Karsmeyer, S. J., Waldman, T. A. & Leder, P. Nature 290, 368–372 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Perry, R. P. et al. Proc. natn. Acad. Sci. U.S.A. 77, 1937–1941 (1980),

    Article  ADS  CAS  Google Scholar 

  25. Nelson, K. J. & Perry, R. P. Proc. natn. Acad. Sci. U.S.A. 82, 5305–5309 (1985).

    Article  ADS  CAS  Google Scholar 

  26. Picard, D. & Schaffner, W. EMBO J. 3, 3031–3035 (1984).

    Article  CAS  Google Scholar 

  27. Yancopoulos, G. D. & Alt, F. W. Cell 40, 271–281 (1985).

    Article  CAS  Google Scholar 

  28. Reth, M. G., Ammirati, P., Jackson, S. & Alt, F. W. Nature 317, 353–355 (1985).

    Article  ADS  CAS  Google Scholar 

  29. Coleclough, C. Trends Immun. 6, 128–130 (1985).

    Article  CAS  Google Scholar 

  30. Kaartinen, M. & Mäkelä, O. Immun. Today (in the press).

  31. Casey, J. & Davidson, N. Nucleic Acids Res. 4, 1539–1552 (1977).

    Article  CAS  Google Scholar 

  32. Sharp, P. A., Berk, A. & Berget, S. Meth. Enzym. 65, 750–768 (1980).

    Article  CAS  Google Scholar 

  33. Wagner, M. & Perry, R. P., Molec. cell. Biol. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lennon, G., Perry, R. Cμ-containing transcripts initiate heterogeneously within the IgH enhancer region and contain a novel 5′-nontranslatable exon. Nature 318, 475–478 (1985). https://doi.org/10.1038/318475a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/318475a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing